先閱讀下列因式分解的過程,再回答所提出的問題:
例1.1+ax+ax(1+ax)
     =(1+ax)(1+ax)
     =(1+ax)2
例2.1+ax+ax(1+ax)+ax(1+ax)2
     =(1+ax)(1+ax)+ax(1+ax)2
     =(1+ax)2+ax(1+ax)2
     =(1+ax)2(1+ax)
     =(1+ax)3
(1)分解因式:
1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n
(2)分解因式:
x-1-x(x-1)+x(x-1)2-x(x-1)3+……-x(x-1)2003+x(x-1)2004。
解:(1);
(2)

 

 
  =
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=
(1+ax)n+1
;
(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-分組法因式分解(帶解析) 題型:解答題

先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n= (1+ax)n+1 ;
(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-分組法因式分解(解析版) 題型:解答題

先閱讀下列因式分解的過程,再回答所提出的問題:

例1:1+ax+ax(1+ax)=(1+ax)(1+ax)

=(1+ax)2

例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2

=(1+ax)2+ax(1+ax)2

=(1+ax)2(1+ax)

=(1+ax)3

(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=。1+axn+1 

(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004

(答題要求:請將第(1)問的答案填寫在題中的橫線上)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=______;
(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:計算題

先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)=(1+ax)2
例2:1+ax+ax(1+ax)+ax(1+ax)2
=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=                            ;
(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

同步練習(xí)冊答案