精英家教網 > 初中數學 > 題目詳情

【題目】如圖,我校一塊邊長為2x米的正方形空地是八年級1﹣4班的衛(wèi)生區(qū),學校把它分成大小不同的四塊,采用抽簽的方式安排衛(wèi)生區(qū),下圖是四個班級所抽到的衛(wèi)生區(qū)情況,其中1班的衛(wèi)生區(qū)是一塊邊長為(x﹣2y)米的正方形,其中0<2y<x.

(1)分別用x、y的式子表示八年3班和八年4班的衛(wèi)生區(qū)的面積;

(2)求2班的衛(wèi)生區(qū)的面積比1班的衛(wèi)生區(qū)的面積多多少平方米?

【答案】(1)x2﹣4y2(2)8xy平方米

【解析】

試題分析:(1)結合圖形、根據平方差公式計算即可;

(2)根據圖形分別表示出2班的衛(wèi)生區(qū)的面積和1班的衛(wèi)生區(qū),根據平方差公式和完全平方公式化簡、求差即可.

解:(1)八年3班的衛(wèi)生區(qū)的面積=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;

八年4班的衛(wèi)生區(qū)的面積=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;

(2)[2x﹣(x﹣2y)]2﹣(x﹣2y)2=8xy.

答:2班的衛(wèi)生區(qū)的面積比1班的衛(wèi)生區(qū)的面積多8xy平方米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某科技開發(fā)公司研制出一種新型產品,每件產品的成本為2400元,銷售單價定為3000元.在該產品的試銷期間,為了促銷,鼓勵商家購買該新型產品,公司決定商家一次購買這種新型產品不超過10件時,每件按3000元銷售;若一次購買該種產品超過10件時,每多購買一件,所購買的全部產品的銷售單價均降低10元,但銷售單價均不低于2600元.

(1)商家一次購買這種產品多少件時,銷售單價恰好為2600元?

(2)設商家一次購買這種產品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數關系式,并寫出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現:當商家一次購買產品的件數超過某一數量時,會出現隨著一次購買的數量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數量越多,公司所獲的利潤最大,公司應將最低銷售單價調整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=﹣(x+1)2﹣2的頂點坐標是( 。

A. (1,2) B. (1,﹣2) C. (﹣1,2) D. (﹣1,﹣2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.

(1)請用兩種不同的方法求圖②中陰影部分的面積.

方法1:

方法2:

(2)觀察圖②請你寫出下列三個代數式:(m+n)2,(m﹣n)2,mn之間的等量關系.

(3)根據(2)題中的等量關系,解決如下問題:

①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;

②已知:,求:的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于 x 的方程 x2+bx+a=0 的一個根是-a(a≠0), ab 的值為( )

A. -1 B. 0 C. 1 D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知(x2+y2)(x2+y2﹣1)=12,則x2+y2的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的有(  )

①在同一平面內,過直線上一點有且只有一條直線垂直于已知直線;

②在同一平面內,過直線外一點有且只有一條直線垂直于已知直線;

③在同一平面內,過一點可以畫一條直線垂直于已知直線;

④在同一平面內,有且只有一條直線垂直于已知直線.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】P為直線l外一點,點A、B、C為直線上三點,PA=2cmPB=3cm,PC=4cm,則點P到直線l的距離為( )

A.等于2cm B.小于2cm C.大于2cm D.不大于2cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是

A. a5+a5=a10 B. a3·a3=a9 C. 3a33=9a9 D. a12÷a3=a9

查看答案和解析>>

同步練習冊答案