如圖,已知△ABC中,AB=AC,點E、F在邊BC上,滿足∠EAF=∠C,求證:BF•CE=AB2

【答案】分析:利用兩角對應成比例可得△ABF∽△ECA,對應邊成比例可得相應的比例式,整理可得所求的乘積式.
解答:證明:∵∠AFB=∠C+∠FAC=∠EAF+∠FAC=∠EAC,
又∵AB=AC,
∴∠B=∠C,即∠ABF=∠ECA,
∴△ABF∽△ECA,

∴BF•EC=AB•AC=AB2
點評:考查相似三角形的判定與性質(zhì)的應用;利用所給乘積式判斷出應證明哪兩個三角形相似是解決本題的突破點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設E到BC的距離為x,△DEF的面積為y,那么y關于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結論不正確的是( 。

查看答案和解析>>

同步練習冊答案