【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在函數(shù)y=(x>0)的圖象上從左向右運(yùn)動,PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點(diǎn)A,AB∥x軸交PO的延長線于點(diǎn)B,則△PAB的面積( 。
A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線()與雙曲線相交于點(diǎn)、,已知點(diǎn)坐標(biāo),點(diǎn)在第三象限內(nèi),且的面積為3(為坐標(biāo)原點(diǎn)).
(1)求實(shí)數(shù)、、的值;
(2)在該拋物線的對稱軸上是否存在點(diǎn)使得為等腰三角形?若存在請求出所有的點(diǎn)的坐標(biāo),若不存在請說明理由.
(3)在坐標(biāo)系內(nèi)有一個點(diǎn),恰使得,現(xiàn)要求在軸上找出點(diǎn)使得的周長最小,請求出的坐標(biāo)和周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
請根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);
(2)該轄區(qū)約有18000名初中學(xué)生,請你估計其中達(dá)到國家規(guī)定體育活動時間的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,AC與相交于點(diǎn)O,N是AO的中點(diǎn),點(diǎn)M在BC邊上,P是OD的中點(diǎn),過點(diǎn)P作PM⊥BC于點(diǎn)M,交于點(diǎn)N′,則PN-MN′的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形一個頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,∠A=40°,∠B=60°,當(dāng)∠BCD=40°時,證明:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD是以AC為底邊的等腰三角形,求∠ACB的度數(shù).
(3)如圖2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割線,△ACD是以CD為底邊的等腰三角形,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是上一點(diǎn),.
(Ⅰ)如圖①,過點(diǎn)作的切線,與的延長線交于點(diǎn),求的大小及的長;
(Ⅱ)如圖②,為上一點(diǎn),延長線與交于點(diǎn),若,求的大小及的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2+nx﹣3(m≠0)與x軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=﹣x與該拋物線交于E,F兩點(diǎn).
(1)求點(diǎn)C坐標(biāo)及拋物線的解析式.
(2)P是直線EF下方拋物線上的一個動點(diǎn),作PH⊥EF于點(diǎn)H,求PH的最大值.
(3)以點(diǎn)C為圓心,1為半徑作圓,⊙C上是否存在點(diǎn)D,使得△BCD是以CD為直角邊的直角三角形?若存在,直接寫出D點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點(diǎn)E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F是線段BC上的動點(diǎn),將△EBF沿EF所在直線折疊得到△EB′F,連接ED,則DE的長度是_____,B′D的最小值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com