如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,C為BD弧的中點,AC、BD交于點E.
(1)求證:△CBE∽△CAB;
(2)若S△CBE:S△CAB=1:4,求sin∠ABD的值.

【答案】分析:(1)利用圓周角定理得出∠DBC=∠BAC,根據(jù)兩角對應(yīng)相等得出兩三角形相似直接證明即可;
(2)利用相似三角形的性質(zhì)面積比等于相似比的平方得出AC:BC=BC:EC=2:1,再利用三角形中位線的性質(zhì)以及三角函數(shù)知識得出.
解答:(1)證明:∵點C為弧BD的中點,∴∠DBC=∠BAC,
在△CBE與△CAB中;
∠DBC=∠BAC,∠BCE=∠ACB,
∴△CBE∽△CAB.

(2)解:連接OC交BD于F點,則OC垂直平分BD
∵S△CBE:S△CAB=1:4,△CBE∽△CAB,
∴AC:BC=BC:EC=2:1,
∴AC=4EC,
∴AE:EC=3:1,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴AD∥OC,則AD:FC=AE:EC=3:1,
設(shè)FC=a,則AD=3a,
∵F為BD的中點,O為AB的中點,
∴OF是△ABD的中位線,則OF=AD=1.5a,
∴OC=OF+FC=1.5a+a=2.5a,則AB=2OC=5a,
在Rt△ABD中,sin∠ABD==
點評:此題主要考查了相似三角形的判定與性質(zhì)以及三角形中位線的性質(zhì)等知識,利用未知數(shù)表示出OF=AD=1.5a,AB=2OC=5a是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案