29、如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過點D作AC的垂線,垂足為F,與AB相交于點E,連接CE.
(1)說明:AE=CE=BE;
(2)若AB=15cm,P是直線DE上的一點.則當P在何處時,PB+PC最小,并求出此時PB+PC的值.
分析:(1)先根據(jù)等邊三角形三線合一的性質(zhì)得出AE=CE,再根據(jù)等腰三角形的判定定理得出△BCE是等腰三角形,即CE=BE即可得出結論;
(2)根據(jù)線段的垂直平分線到線段兩端的距離相等可得PC=PA,再由兩點之間線段最短可得出當P在E處時最小,即PB+PC=AB=15cm.
解答:解:(1)等邊三角形ADC中,
∵DF⊥AC,
∴DF垂直平分AC,
∴AE=CE;
∴∠ACE=∠CAE,
∵∠ACB=90°,
∴∠ACE+∠BCE=∠CAE+∠B=90°,
∴∠BCE=∠B,
∴CE=BE,
∴AE=CE=BE;

(2)∵DE垂直平分AC,
∴PC=PA,
∴PB+PC=PB+PA;
∴PB+PC最小,也就是PB+PA最小,也就是P、B、A在同一直線上是最小,即當P在E處時最小,
當點P在E處時,PB+PC=EB+EC=AB=15cm.
點評:本題考查的是最短線路問題,解答此類題目的關鍵是熟知兩點之間線段最短的知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案