【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC.過(guò)點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)若⊙O的半徑為 cm,弦BD的長(zhǎng)為3cm,求CF的長(zhǎng).
【答案】
(1)
證明:連結(jié)OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)
解:作OH⊥BD于H,如圖,
則BH=DH= BD= ,
在Rt△OBH中,∵OB= ,BH= ,
∴OH= =2,
易得四邊形OHEC為矩形,
∴CE=OH=2,HE=OC= ,
∴BE=NE﹣BH=1,
∵BE∥OC,
∴△FBE∽△FOC,
∴ ,即 ,
∴CF= .
【解析】(1)連結(jié)OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;(2)解:作OH⊥BD于H,如圖,根據(jù)垂徑定理得到BH=DH= BD= ,在Rt△OBH中可利用勾股定理計(jì)算出OH=2,易得四邊形OHEC為矩形,則CE=OH=2,HE=OC= ,BE=1,然后證明△FBE∽△FOC,利用相似比可計(jì)算出CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=6,O是AB的中點(diǎn),直線l經(jīng)過(guò)點(diǎn)O,∠1=120°,P是直線l上一點(diǎn),當(dāng)△APB為直角三角形時(shí),AP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB和拋物線交于點(diǎn)A(﹣4,0),B(0,4),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求直線AB和拋物線的解析式.
(2)點(diǎn)P是直線上方拋物線上的一點(diǎn),求當(dāng)△PAB面積最大時(shí)點(diǎn)P的坐標(biāo).
(3)M是直線AB上一動(dòng)點(diǎn),在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①△DFE是等腰直角三角形;②四邊形CEDF的周長(zhǎng)不變;③點(diǎn)C到線段EF的最大距離為1.其中正確的結(jié)論有 . (填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步推廣“陽(yáng)光體育”大課間活動(dòng),某中學(xué)對(duì)已開(kāi)設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點(diǎn)A在函數(shù)y=﹣ (x<0)的圖象上,將此矩形向右平移3個(gè)單位長(zhǎng)度到A1B1O1C1的位置,此時(shí)點(diǎn)A1在函數(shù)y= (x>0)的圖象上,C1O1與此圖象交于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2…按如圖所示放置,點(diǎn)A1、A2、A3…在直線y=x+1上,點(diǎn)C1、C2、C3…在x軸上,則An的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】首條貫通絲綢之路經(jīng)濟(jì)帶的高鐵線﹣﹣寶蘭客專(zhuān)進(jìn)入全線拉通試驗(yàn)階段,寶蘭客專(zhuān)的通車(chē)對(duì)加快西北地區(qū)與“一帶一路”沿線國(guó)家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義,試運(yùn)行期間,一列動(dòng)車(chē)從西安開(kāi)往西寧,一列普通列車(chē)從西寧開(kāi)往西安,兩車(chē)同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為x(小時(shí)),兩車(chē)之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行一下探究:
(1)西寧到西安兩地相距千米,兩車(chē)出發(fā)后小時(shí)相遇;
(2)普通列車(chē)到達(dá)終點(diǎn)共需小時(shí),普通列車(chē)的速度是千米/小時(shí).
(3)求動(dòng)車(chē)的速度;
(4)普通列車(chē)行駛t小時(shí)后,動(dòng)車(chē)到達(dá)終點(diǎn)西寧,求此時(shí)普通列車(chē)還需行駛多少千米到達(dá)西安?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com