如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( )
A.1對 B.2對 C.3對 D.4對
D【考點】全等三角形的判定;線段垂直平分線的性質(zhì);等腰三角形的性質(zhì).
【專題】壓軸題.
【分析】根據(jù)已知條件“AB=AC,D為BC中點”,得出△ABD≌△ACD,然后再由AC的垂直平分線分別交AC、AD、AB于點E、O、F,推出△AOE≌△EOC,從而根據(jù)“SSS”或“SAS”找到更多的全等三角形,要由易到難,不重不漏.
【解答】解:∵AB=AC,D為BC中點,
∴CD=BD,∠BDO=∠CDO=90°,
在△ABD和△ACD中,
,
∴△ABD≌△ACD;
∵EF垂直平分AC,
∴OA=OC,AE=CE,
在△AOE和△COE中,
,
∴△AOE≌△COE;
在△BOD和△COD中,
,
∴△BOD≌△COD;
在△AOC和△AOB中,
,
∴△AOC≌△AOB;
故選:D.
【點評】本題考查的是全等三角形的判定方法;這是一道考試常見題,易錯點是漏掉△ABO≌△ACO,此類題可以先根據(jù)直觀判斷得出可能全等的所有三角形,然后從已知條件入手,分析推理,對結(jié)論一個個進行論證.
科目:初中數(shù)學 來源: 題型:
在下列各組條件中,不能說明△ABC≌△DEF的是( )
A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠D
C.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖:已知在Rt△ABC中,∠C=90°,∠A=30°,在直線AC上找點P,使△ABP是等腰三角形,則∠APB的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
.已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點.
(1)如圖1,當點P與點Q重合時,AE與BF的位置關系是__________,QE與QF的數(shù)量關系式__________;
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,∠B=30°,∠C=45°,AC=2,點P是△ABC三條邊上的任意一點.若△ACP為等腰三角形,在圖中作出所有符合條件的點P,要求:
①尺規(guī)作圖,不寫作法,保留痕跡;
②若符合條件的點P不只一個,請標注P1、P2…
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知等腰三角形一腰上的高線與另一腰的夾角為50°,那么這個等腰三角形的頂角等于( )
A.15°或75° B.140° C.40° D.140°或40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com