如圖在Rt△ABC中,∠C=90°,CD⊥AB,BC=5,AC=12,則CD=________.


分析:根據(jù)勾股定理求得AB的長(zhǎng),再根據(jù)三角形的面積公式求得CD即可.
解答:∵∠ACB=90°,AC=12,BC=5,
∴AB==13,
∵S△ABC=×5×12=×13×CD,
∴CD=
故答案為:
點(diǎn)評(píng):此題考查了直角三角形面積的不同表示方法及勾股定理的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠BAC=90°,AB=5,AC=4,AD、AE分別是△ABC的中線和角平分線,則△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠ACB=90°,sinA=
23
,點(diǎn)D、E分別在AB、AC邊上,DE⊥AC,DE=2,DB=9,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠C=90°,AC=5,AB=13,則tanB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在Rt△ABC中,AD平分∠CAB,CD=8cm,那么點(diǎn)D到AB的距離是
8
8
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖在Rt△ABC中,CD是AB邊上的高,若AD=8,BD=2,則CD=
4
4

(2)在△ABC中,AB=15,AC=13,BC邊上的高AD=12,試求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案