A. | 3$\sqrt{7}$ | B. | 4$\sqrt{7}$ | C. | 2$\sqrt{7}$+6 | D. | 11 |
分析 根據(jù)要使△AMN的周長最小,即利用點(diǎn)的對稱,讓三角形的三邊在同一直線上,作出A關(guān)于BC和ED的對稱點(diǎn)A′,A″,即可得出最短路線,再利用勾股定理,求出即可.
解答 解:作A關(guān)于BC和CD的對稱點(diǎn)A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值,作A′H⊥DA交DA的延長線于H,
∴AA′=2AB=4,AA″=2AD=8,∵∠DAB=120°,
∴∠HAA′=60°,
則Rt△A′HA中,∵∠EAB=120°,∴∠HAA′=60°,
∵A′H⊥HA,
∴∠AA′H=30°,
∴AH=$\frac{1}{2}$AA′=2,
∴A′H=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
A″H=2+8=10,
∴A′A″=$\sqrt{A′{H}^{2}+A″{H}^{2}}$=4$\sqrt{7}$.
故選:B.
點(diǎn)評 本題考查的是軸對稱-最短路線問題,涉及到平面內(nèi)最短路線問題求法以及三角形的外角的性質(zhì)和垂直平分線的性質(zhì)等知識,根據(jù)已知得出M,N的位置是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com