在Rt△ABC中,已知∠A=90°,AB=AC=2,則BC=________.

2
分析:根據(jù)題意可以判定BC為Rt△ABC的斜邊,且已知AB、AC,根據(jù)勾股定理可以計(jì)算BC的長(zhǎng).
解答:在Rt△ABC中,已知∠A=90°,
∴BC為斜邊,
已知AB=AC=2,
則BC==2
故答案為:2
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的正確運(yùn)用,本題中確定BC是斜邊并根據(jù)勾股定理求值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求證:(1)△HEF≌△EHC;
(2)△HEF∽△HBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AB=6cm.把△ABC以點(diǎn)B為中心逆時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊的延長(zhǎng)線上得到Rt△A1BC1
(1)作出Rt△A1BC1(不要求寫作法);
(2)用陰影表示旋轉(zhuǎn)過程中邊AC掃過的圖形,然后求出它的面積(結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知∠C=90°,∠A=30°,BD是∠B的平分線,AC=18,則BD的值為(  )
A、3
3
B、9
C、12
D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=
45
,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,已知tanB=2,則sinA的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案