【題目】如圖,直線(xiàn)AB經(jīng)過(guò)⊙O上的點(diǎn)C,直線(xiàn)AO與⊙O交于點(diǎn)E和點(diǎn)D,OB與⊙O交于點(diǎn)F,連接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求證:①直線(xiàn)AB是⊙O的切線(xiàn);②∠FDC=∠EDC;
(2)求CD的長(zhǎng).
【答案】(1)①證明見(jiàn)解析;②證明見(jiàn)解析;(2).
【解析】
試題分析:(1)①欲證明直線(xiàn)AB是⊙O的切線(xiàn),只要證明OC⊥AB即可.
②首先證明OC∥DF,再證明∠FDC=∠OCD,∠EDC=∠OCD即可.
(2)作ON⊥DF于N,延長(zhǎng)DF交AB于M,在RT△CDM中,求出DM、CM即可解決問(wèn)題.
試題解析:(1)①證明:連接OC.
∵OA=OB,AC=CB,∴OC⊥AB,∵點(diǎn)C在⊙O上,∴AB是⊙O切線(xiàn).
②證明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.
(2)作ON⊥DF于N,延長(zhǎng)DF交AB于M.
∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四邊形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過(guò)14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過(guò)14噸,則超過(guò)部分每噸按市場(chǎng)價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)價(jià)分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次食品安檢中,抽查某企業(yè)10袋奶粉,每袋取出100克,檢測(cè)每100克奶粉蛋白質(zhì)含量與規(guī)定每100克含量(蛋白質(zhì))比較,不足為負(fù),超過(guò)為正,記錄如下:(注:規(guī)定每100g奶粉蛋白質(zhì)含量為15g)-3,-4,-5,+1,+3,+2,0,-1.5,+1,+2.5
(1)求平均每100克奶粉含蛋白質(zhì)為多少?
(2)每100克奶粉含蛋白質(zhì)不少于14克為合格,求合格率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)道,2015年某市城鎮(zhèn)非私營(yíng)單位就業(yè)人員年平均工資超過(guò)60500元,將數(shù)60500用科學(xué)計(jì)數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線(xiàn)AC上一點(diǎn),過(guò)點(diǎn)A作AD⊥BP于點(diǎn)D,交直線(xiàn)BC于點(diǎn)Q.
(1)如圖1,當(dāng)P在線(xiàn)段AC上時(shí),求證:BP=AQ;
(2)如圖2,當(dāng)P在線(xiàn)段CA的延長(zhǎng)線(xiàn)上時(shí),(1)中的結(jié)論是否成立?(填“成立”或“不成立”)
(3)在(2)的條件下,當(dāng)∠DBA=度時(shí),存在AQ=2BD,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是 ;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若,則b的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com