如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC=S四邊形BEOF中,正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:由正方形ABCD的邊長為4,AE=BF=1,利用SAS易證得△EBC≌△FCD,然后全等三角形的對(duì)應(yīng)角相等,易證得①∠DOC=90°正確;②由線段垂直平分線的性質(zhì)與正方形的性質(zhì),可得②錯(cuò)誤;易證得∠OCD=∠DFC,即可求得③正確;由①易證得④正確.
解答:解:∵正方形ABCD的邊長為4,
∴BC=CD=4,∠B=∠DCF=90°,
∵AE=BF=1,
∴BE=CF=4-1=3,
在△EBC和△FCD中,
,
∴△EBC≌△FCD(SAS),
∴∠CFD=∠BEC,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
∴∠DOC=90°;
故①正確;
若OC=OE,
∵DF⊥EC,
∴CD=DE,
∵CD=AD<DE(矛盾),
故②錯(cuò)誤;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
∴∠OCD=∠DFC,
∴tan∠OCD=tan∠DFC==,
故③正確;
∵△EBC≌△FCD,
∴S△EBC=S△FCD,
∴S△EBC-S△FOC=S△FCD-S△FOC,
即S△ODC=S四邊形BEOF
故④正確.
故選C.
點(diǎn)評(píng):此題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識(shí).此題綜合性較強(qiáng),難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請(qǐng)畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當(dāng)CE=
a
a
時(shí),S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時(shí),S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對(duì)角線交于O,過O點(diǎn)作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說明OE=OF;
(2)當(dāng)AE=AB時(shí),過點(diǎn)E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案