如圖1,在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a>0)的圖像頂點為D,與y軸交于點C,與x軸交于點A、B,點A在原點的左側(cè),點B的坐標為(3,0),OB=OC,tan∠ACO=.
1.求這個二次函數(shù)的解析式;
2.若平行于x軸的直線與該拋物線交于點M、N,且以MN為直徑的圓與x軸相切,求該圓的半徑長度;Com]
3.如圖2,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上的一動點,當點P運動到什么位置時,△AGP的面積最大?求此時點P的坐標和△AGP的最大面積.
|
1.由OC=OB=3,知C
連接AC,在Rt△AOC中,OA=OC×tan∠ACO=,故A
設(shè)所求二次函數(shù)的表達式為
將C代入得,解得,
∴這個二次函數(shù)的表達式為。
2.①當直線MN在x軸上方時,設(shè)所求圓的半徑為R(R>0),設(shè)M在N的左側(cè),
∵所求圓的圓心在拋物線的對稱軸上,
∴N(R+1,R)代入中得
,
解得 (舍)
②當直線MN在x軸下方時,設(shè)所求圓的半徑為,由①可知N,代入拋物線方程可得 (舍)。
3.
解析:
1.根據(jù)已知條件,易求得C、A的坐標,可用待定系數(shù)法求出拋物線的解析式;
2.根據(jù)拋物線和圓的對稱性,知圓心必在拋物線的對稱軸上,由于該圓與x軸相切,可用圓的半徑表示出M、N的坐標,將其入拋物線的解析式中,即可求出圓的半徑;(需注意的是圓心可能在x軸上方,也可能在x軸下方,需要分類討論)
3.易求得AC的長,由于AC長為定值,當P到直線AG的距離最大時,△APG的面積最大.可過P作y軸的平行線,交AG于Q;設(shè)出P點坐標,根據(jù)直線AG的解析式可求出Q點坐標,也就求出PQ的長,進而可得出關(guān)于△APG的面積與P點坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)可求出△APG的最大面積及P點的坐標,根據(jù)此時△APG的面積和AG的長,即可求出P到直線AC的最大距離.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步輕松練習 八年級 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.
(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發(fā)現(xiàn):
如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.
如圖2,當點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.
(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;
(2)如圖3,在平面直角坐標系xOy中,當、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com