【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩個(gè)點(diǎn),且D是弧BC的中點(diǎn),OD與BC交于點(diǎn)E,連接AC.
(1)若∠A=70°,求∠CBD的度數(shù);
(2)若DE=2,BC=6,求半圓O的半徑.
【答案】(1)35°;(2)
【解析】
(1)連接CO,根據(jù)圓周角定理可得∠COD=140°,則∠CBD的度數(shù)即可求得;
(2)易證OD⊥BC,設(shè)半圓O的半徑為x,利用勾股定理求得x,則半圓O的半徑即可求得.
(1)連接CO.
∵∠A=70°,∴∠COD=2∠A=140°.
又∵D是的中點(diǎn),∴∠COD=70°.
∴∠CBD=∠COD=35°
(2)∵CO=BO,∠COD=∠DOB,∴OD⊥BC.
又∵OD是半徑,∴CE=BE=BC
∵BC=6,∴BE=3.
設(shè)半圓O的半徑為x,則OB=OD=x,OE=x-2,(x-2)2+32=x2
解得x=.
即半圓O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,0),B(1,4),C(0,3).
(1)求出此二次函數(shù)的表達(dá)式,并把它化成的形式;
(2)請(qǐng)?jiān)谧鴺?biāo)系內(nèi)畫(huà)出這個(gè)函數(shù)的圖象,并根據(jù)圖象寫(xiě)出函數(shù)值y為負(fù)數(shù)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)圖象第一象限上一點(diǎn),過(guò)點(diǎn)A作軸于B點(diǎn),以AB為直徑的圓恰好與y軸相切,交反比例函數(shù)圖象于點(diǎn)C,在AB的左側(cè)半圓上有一動(dòng)點(diǎn)D,連結(jié)CD交AB于點(diǎn)記的面積為,的面積為,連接BC,則是______三角形,若的值最大為1,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點(diǎn)B的坐標(biāo)是(6,0),則點(diǎn)C的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱(chēng)軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處,已知,連接,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.
(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);
(2)如圖2,過(guò)點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC = 90°,BC = 1,AC =.
(1)以點(diǎn)B為旋轉(zhuǎn)中心,將△ABC沿逆時(shí)針?lè)较?/span>旋轉(zhuǎn)90°得到△A′BC′,請(qǐng)畫(huà)出變換后的圖形;
(2)求點(diǎn)A和點(diǎn)A′之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)域?yàn)轫憫?yīng)“綠水青山就是金山銀山”的號(hào)召,加強(qiáng)了綠化建設(shè).為了解該區(qū)域群眾對(duì)綠化建設(shè)的滿(mǎn)意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個(gè)片區(qū)進(jìn)行了調(diào)查,得到如下不完整統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中信息,解決下列問(wèn)題:
(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿(mǎn)意”的人數(shù)為多少人;
(2)興趣小組準(zhǔn)備從“不滿(mǎn)意”的4位群眾中隨機(jī)選擇2位進(jìn)行回訪,已知這4位群眾中有2位來(lái)自甲片區(qū),另2位來(lái)自乙片區(qū),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求出選擇的群眾來(lái)自甲片區(qū)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com