【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長與面積.
【答案】(1)證明見解析;(2)邊長為cm,面積為cm2.
【解析】
試題分析:(1)根據(jù)EH∥BC即可證明.
(2)如圖設AD與EH交于點M,首先證明四邊形EFDM是矩形,設正方形邊長為x,再利用△AEH∽△ABC,得,列出方程即可解決問題.
試題解析:(1)證明:∵四邊形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.
(2)解:如圖設AD與EH交于點M.
∵∠EFD=∠FEM=∠FDM=90°,∴四邊形EFDM是矩形,∴EF=DM,設正方形EFGH的邊長為x,∵△AEH∽△ABC,∴,∴,∴x=,∴正方形EFGH的邊長為cm,面積為cm2.
科目:初中數(shù)學 來源: 題型:
【題目】在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設:S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
所以S= .
得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點E在線段DE上,點A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長AE交CG于點H.
(1)求sin∠EAC的值.
(2)求線段AH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA⊥OC,OB⊥OD,下面結論:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正確的有(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車隊運送一批貨物,若每輛車裝4噸,還剩下8噸未裝;若每輛車裝4.5噸,不僅裝完全部貨物,并且其中有一輛車只裝了3.5噸。這個汽車隊共派了多少輛汽車運輸這批貨物?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com