【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門就“你某天在校體育活動(dòng)時(shí)間是多少”的問題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t≤1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問題:

(1)此次抽查的學(xué)生數(shù)為人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)從抽查的學(xué)生中隨機(jī)詢問一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是
(4)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有人.

【答案】
(1)300;
(2)

C組的人數(shù)=300×40%=120人,

A組的人數(shù)=300﹣100﹣120﹣60=20人,

補(bǔ)全條形統(tǒng)計(jì)圖如圖所示,


(3)40%
(4)720人.
【解析】解:(1)60÷20%=300(人)答:此次抽查的學(xué)生數(shù)為300人,故答案為:300;
     。2)C組的人數(shù)=300×40%=120人,
A組的人數(shù)=300﹣100﹣120﹣60=20人,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示,
;
    。3)該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是 =40%,根據(jù)概率公式即可得到結(jié)論;
    。4)當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有1200× =720人.用總?cè)藬?shù)乘以達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的百分比即可得到結(jié)論.
本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大。1)根據(jù)題意即可得到結(jié)論;(2)求出C組的人數(shù),A組的人數(shù)補(bǔ)全條形統(tǒng)計(jì)圖即可;(3)根據(jù)概率公式即可得到結(jié)論;(4)用總?cè)藬?shù)乘以達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的百分比即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【操作發(fā)現(xiàn)】在計(jì)算器上輸入一個(gè)正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運(yùn)算結(jié)果越來越接近1或都等于1.
【提出問題】輸入一個(gè)實(shí)數(shù),不斷地進(jìn)行“乘以常數(shù)k,再加上常數(shù)b”的運(yùn)算,有什么規(guī)律?
【分析問題】我們可用框圖表示這種運(yùn)算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(diǎn)(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(diǎn)(x2 , y1),然后再x軸上確定對(duì)應(yīng)的數(shù)x2 , …,以此類推.
【解決問題】研究輸入實(shí)數(shù)x1時(shí),隨著運(yùn)算次數(shù)n的不斷增加,運(yùn)算結(jié)果x,怎樣變化.

(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進(jìn)行觀察研究;
(2)若k>1,又得到什么結(jié)論?請(qǐng)說明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請(qǐng)?jiān)趚軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實(shí)數(shù)x1時(shí),運(yùn)算結(jié)果xn互不相等,且越來越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15,AC=9,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機(jī)落在這塊綠化帶上,則小鳥落在花圃上的概率為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校將為初一學(xué)生開設(shè)ABCDEF共6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了“我最喜歡的一門選修課”調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)

選修課

A

B

C

D

E

F

人數(shù)

40

60

100

根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( 。

A.這次被調(diào)查的學(xué)生人數(shù)為400人
B.扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中喜歡選修課E,F(xiàn)的人數(shù)分別為80,70
D.喜歡選修課C的人數(shù)最少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)省新課改精神,我是各校都開設(shè)了“知識(shí)拓展類”、“體藝特長(zhǎng)類”、“實(shí)踐活動(dòng)類”三類拓展性課程,某校為了解在周二第六節(jié)開設(shè)的“體藝特長(zhǎng)類”中各門課程學(xué)生的參與情況,隨機(jī)調(diào)查了部分學(xué)生作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的統(tǒng)計(jì)圖(部分信息未給出)
根據(jù)圖中信息,解答下列問題:
(1)求被調(diào)查學(xué)生的總?cè)藬?shù);
(2)若該校有200名學(xué)生參加了“體藝特長(zhǎng)類”中的各門課程,請(qǐng)估計(jì)參加棋類的學(xué)生人數(shù);
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你給學(xué)校提一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問題:

(1)本次調(diào)查屬于調(diào)查,樣本容量是;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);
(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個(gè)問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細(xì)分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證

(1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.
(2)利用題中的結(jié)論,解答下列問題:在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案