精英家教網(wǎng)如圖,四邊形ABCD是正方形,延長AB到E,使AE=AC,則∠BCE的度數(shù)是
 
°.
分析:由四邊形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根據(jù)等邊對等角與三角形內角和等于180°,即可求得∠ACE的度數(shù),又由∠BCE=∠ACE-∠ACB,即可求得答案.
解答:解:∵四邊形ABCD是正方形,
∴∠BAC=∠ACB=45°,
∵AE=AC,
∴∠ACE=∠E=
180°-45°
2
=67.5°,
∴∠BCE=∠ACE-∠ACB=67.5°-45°=22.5°.
故答案為:22.5°.
點評:此題考查了正方形的性質與等腰三角形的性質.此題難度不大,解題的關鍵是注意數(shù)形結合思想的應用,注意特殊圖形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案