【題目】如圖,拋物線交x軸于A、B兩點(diǎn),直線y=kx+b經(jīng)過(guò)點(diǎn)A,與這條拋物線的對(duì)稱(chēng)軸交于點(diǎn)M(1,2),且點(diǎn)M與拋物線的頂點(diǎn)N關(guān)于x軸對(duì)稱(chēng).
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點(diǎn)為C,已知P(x,y)為線段AC上一點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,交拋物線于點(diǎn)Q.求線段PQ的最大值及此時(shí)P坐標(biāo);
(3)在(2)的條件下,求△AQC面積的最大值.
【答案】(1);(2)PQ有最大值=,此時(shí)P(2,3);(3)
【解析】
(1)由于點(diǎn)M和拋物線頂點(diǎn)關(guān)于x軸對(duì)稱(chēng),即可得到點(diǎn)N的坐標(biāo),進(jìn)而表示出該拋物線的頂點(diǎn)坐標(biāo)式函數(shù)解析式;
(2)將點(diǎn)A與點(diǎn)M的坐標(biāo)代入y=kx+b求出k與b的值,確定直線AC的解析式,得到點(diǎn)P坐標(biāo)為(x,x+1),根據(jù)直線AC和拋物線的解析式,即可得到P、Q的縱坐標(biāo),從而得到關(guān)于PQ的長(zhǎng)和P點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出PQ的最大值及對(duì)應(yīng)的P點(diǎn)坐標(biāo);
(3)由于△AQC面積=△AQP面積+△CPQ面積,根據(jù)三角形面積公式將PQ的最大值代入計(jì)算即可求解.
(1)由題意知,拋物線頂點(diǎn)N的坐標(biāo)為(1,-2),
(2)由(1)得:x=-1或3,即A(-1,0)、B(3,0);
∵將A(-1,0)、M(1,2)代入y=kx+b中得:
解得:
∴直線AC的函數(shù)關(guān)系式為y=x+1,
解方程組
得x=-1或5,即A(-1,0)、C(5,6);
∴點(diǎn)P在線段AC之間
設(shè)P坐標(biāo)為(x,x+1),則Q的坐標(biāo)為
∴PQ=(x+1) - ()=
時(shí)
有最大值
此時(shí)
(3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)畫(huà)出△ABC關(guān)于原點(diǎn)成中心對(duì)稱(chēng)的三角形△A′B′C′;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出圖形,直接寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)B″的坐標(biāo);
(3)請(qǐng)直接寫(xiě)出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在梯形ABCD中,AD//BC,AC=BC=10,,點(diǎn)E在對(duì)角線AC上,且CE=AD,BE的延長(zhǎng)線與射線AD、射線CD分別相交于點(diǎn)F、G.設(shè)AD=x,△AEF的面積為y.
(1)求證:∠DCA=∠EBC;
(2)如圖,當(dāng)點(diǎn)G在線段CD上時(shí),求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)如果△DFG是直角三角形,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,D,E在△ABC的邊BC上,若△ADE是等邊三角形則稱(chēng)△ABC可內(nèi)嵌,△ADE叫做△ABC的內(nèi)嵌三角形.
(1)直角三角形______可內(nèi)嵌.(填寫(xiě)“一定”、“一定不”或“不一定”)
(2)如圖2,在△ABC中,∠BAC=120°,△ADE是△ABC的內(nèi)嵌三角形,試說(shuō)明AB2=BDBC是否成立?如果成立,請(qǐng)給出證明;如果不一定成立,請(qǐng)舉例說(shuō)明.
(3)在(2)的條件下,如果AB=1,AC=2,求△ABC的內(nèi)嵌△ADE的邊長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.
(1)請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年某市為創(chuàng)評(píng)“全國(guó)文明城市”稱(chēng)號(hào),周末團(tuán)市委組織志愿者進(jìn)行宣傳活動(dòng).班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過(guò)抽簽的方式確定2名女生去參加.
抽簽規(guī)則:將4名女班干部姓名分別寫(xiě)在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再?gòu)氖S嗟?/span>3張卡片中隨機(jī)抽取第二張,記下姓名.
(1)該班男生“小剛被抽中”是 事件,“小悅被抽中”是 事件(填“不可能”或“必然”或“隨機(jī)”);第一次抽取卡片“小悅被抽中”的概率為 ;
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準(zhǔn)備建造三類(lèi)不同的寢室,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2015年學(xué)校寢室數(shù)為64個(gè),2017年建成后寢室數(shù)為121個(gè),求2015至2017年的平均增長(zhǎng)率;
(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;
(3)若該校今年建造三類(lèi)不同的寢室的總數(shù)為180個(gè),則該校的寢室建成后最多可供多少師生住宿?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)三角形紙片ABC,面積為25,BC的長(zhǎng)為10,∠B、∠C都為銳角,M為AB邊上的一動(dòng)點(diǎn)(M與A、B不重合),過(guò)點(diǎn)M作MN∥BC交AC于點(diǎn)N,設(shè)MN=x.
(1)用x表示△AMN的面積;
(2)△AMN沿MN折疊,使△AMN緊貼四邊形BCNM(邊AM、AN落在四邊形BCNM所在的平面內(nèi)),設(shè)點(diǎn)A落在平面BCNM內(nèi)的點(diǎn)A′,△A′MN與四邊形BCNM重疊部分的面積為y.
①用含x的代數(shù)式表示y,并寫(xiě)出x的取值范圍.
②當(dāng)x為何值時(shí),重疊部分的面積y最大,最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為____________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com