如圖所示,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,則∠EDF的度數(shù)是
50°
50°
分析:由題中條件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°與∠BDE、∠CDF的差表示,進而求解即可.
解答:解:如圖,在△BDE與△CFD中,
BD=CF
∠B=∠C=50°
BE=CD
,
∴△BDE≌△CFD(SAS),
∴∠BDE=∠CFD,
∠EDF=180°-(∠BDE+∠CDF)=180°-(∠CFD+∠CDF)=180°-(180°-∠C)=50°,
∴∠EDF=50°,
故答案是:50°.
點評:本題主要考查了全等三角形的判定及性質.全等三角形的判定是結合全等三角形的性質證明線段和角相等的重要工具.在判定三角形全等時,關鍵是選擇恰當?shù)呐卸l件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案