如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若Rt△ABC的三個項點分別在這三條平行直線上,且∠ACB=90°,∠ABC=30°,則cosα的值是【    】

A.           B.           C.         D.


D。

【考點】平行線的性質(zhì),相似三角形的判定和性質(zhì),勾股定理,銳角三角函數(shù)定義,特殊角的三角函數(shù)值。

【分析】如圖,分別過點C作DE⊥l2, DE與l1交于點D,DE與l3交于點E,

            

故選D。


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系,直至水溫降至20℃,飲水機關機。飲水機關機后即刻自動開機,重復上述自動程序。若在水溫為20℃時,接通電源后,水溫y(℃)和時間(min)的關系如圖,為了在下午第一節(jié)下課時(14:30)能喝到健康衛(wèi)生和水溫適中的水(水沸騰后水溫在20℃和50℃之間,含20℃和50℃),則接通電源的時間最晚是當天下午的         之間。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,已知△ABC中,AB=AC,∠ADB=∠AEC,那么圖中有     對全等三角形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,則五邊形ABCDE的面積等于     。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知⊙B與△ABD的邊AD相切于點C,AC=,⊙B的半徑為2,當⊙A與⊙B相切時,⊙A的半徑是【   】

      1      3      2或4        1或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,A,P,B,C是⊙O上的四個點,∠APC=∠BPC=60°,過點A作⊙O的切線交BP的延長線于點D.

(1)求證:△ADP∽△BDA;

(2)試探究線段PA,PB,PC之間的數(shù)量關系,并證明你的結(jié)論;

(3)若AD=2,PD=1,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知A,B,C為⊙O上相鄰的三個六等分點,點E在劣弧AC上(不與A,B,C重合),EF

為⊙O的直徑,將⊙O沿EF折疊,使點A與A′重合,點B與B′重合,連接EB′,EC,EA′。設EB′=b,EC=c,EA′=p。試探究b,c,p三者的數(shù)量關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


根據(jù)要求,解答下列問題:

(1)已知直線l1的函數(shù)表達式為,直接寫出:①過原點且與l1垂直的直線l2的函數(shù)表達式;②過點(1,0)且與l1垂直的直線l2的函數(shù)表達式;

(2)如圖,過點(1,0)的直線l4向上的方向與x軸的正方向所成的角為600,①求直線l4的函數(shù)表達式;②把直線l4繞點(1,0)按逆時針方向旋轉(zhuǎn)900得到的直線l5,求直線l5的函數(shù)表達式;

(3)分別觀察(1)(2)中的兩個函數(shù)表達式,請猜想:當兩直線垂直時,它們的函數(shù)表達式中自變量的系數(shù)之間有何關系?請根據(jù)猜想結(jié)論直接寫出過點(1,1)且與直線垂直的直線l6的函數(shù)表達式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,正方形ABCD的邊長是4,點P是邊CD上一點,連接PA,將線段PA繞點P逆時針旋轉(zhuǎn)90°得到線段PE,在邊AD延長線上取點F,使DF=DP,連接EF,CF路。

(1)求證:四邊形PCFE是平行四邊形;

(2)當點P在邊CD上運動時,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時CP長;若沒有,請說明理由。

查看答案和解析>>

同步練習冊答案