如圖,△ABC中,AB=AC,∠A=40°,P為△ABC內(nèi)任一點(diǎn),且∠PBC=∠PCA,則∠BPC=________°.

110°
分析:由等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可求得∠ACB=∠ABC=70°,由∠PBC=∠PCA可得,∠ACB=∠PCB+∠PCA=∠PCB+∠PBC=70°,再由三角形內(nèi)角和即可求得∠BPC.
解答:∵AB=AC,∠A=40°,
∴∠ACB=∠ABC=70°,
∵∠PBC=∠PCA,
∴∠ACB=∠PCB+∠PCA=∠PCB+∠PBC=70°,
∴∠BPC=180°-70°=110°.
故答案為:110°.
點(diǎn)評:此題主要考查等腰三角形的性質(zhì)和三角形的內(nèi)角和定理,注意利用已知條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案