精英家教網 > 初中數學 > 題目詳情
(1998•紹興)已知直線y=3x+k(k≠0)不過第二象限,雙曲線上有兩點A(x1,y1)、B(x2,y2),若x2<x1<0,則y1與y2的大小關系是( )
A.y1>y2
B.y1=y2
C.y1<y2
D.無法確定
【答案】分析:由直線y=3x+k(k≠0)不過第二象限,可得k<0;又x2<x1<0,所以點A、B在第二象限,利用反比例函數性質即可求解.
解答:解:∵y=3x+k(k≠0)不過第二象限,
∴k<0,
∵x2<x1<0,
∴A、B都在第二象限,
∴y1>y2
故選A.
點評:此題主要考查一次函數的圖象與系數的關系和反比例函數圖象上點的坐標特征,涉及的知識面較廣,應重點掌握.
練習冊系列答案
相關習題

科目:初中數學 來源:1998年全國中考數學試題匯編《二次函數》(01)(解析版) 題型:解答題

(1998•紹興)已知:拋物線y=-x2+(m+2)x+m-1與x軸交于A、B兩點(點A、B分別在原點O的左、右兩側),以OA、OB為直徑作⊙O1和⊙O2
(1)請問:⊙O1和⊙O2,能否為等圓?若能,求出其半徑的長度;若不能,說明理由;
(2)設拋物線向上平移4個單位后,⊙O1、⊙O2的面積分別成為S1、S2,且4S2-16S1=5π,求平移后所得拋物線的解析式;
(3)由(2)所得的拋物線與y軸交于點C,⊙O1和⊙O2的一條外公切線MN分別交x軸和y軸于點P、Q(M、N為切點,如圖所示),求△CPQ的面積.

查看答案和解析>>

科目:初中數學 來源:1998年浙江省紹興市中考數學試卷 題型:解答題

(1998•紹興)已知:拋物線y=-x2+(m+2)x+m-1與x軸交于A、B兩點(點A、B分別在原點O的左、右兩側),以OA、OB為直徑作⊙O1和⊙O2
(1)請問:⊙O1和⊙O2,能否為等圓?若能,求出其半徑的長度;若不能,說明理由;
(2)設拋物線向上平移4個單位后,⊙O1、⊙O2的面積分別成為S1、S2,且4S2-16S1=5π,求平移后所得拋物線的解析式;
(3)由(2)所得的拋物線與y軸交于點C,⊙O1和⊙O2的一條外公切線MN分別交x軸和y軸于點P、Q(M、N為切點,如圖所示),求△CPQ的面積.

查看答案和解析>>

科目:初中數學 來源:1998年浙江省紹興市中考數學試卷 題型:解答題

(1998•紹興)已知:如圖,△ABC中,點D、E分別在AB、AC上,DE∥BC,過A、D、C點的圓交DE的延長線于F.求證:△FCE∽△ABC.

查看答案和解析>>

科目:初中數學 來源:1998年浙江省紹興市中考數學試卷 題型:選擇題

(1998•紹興)已知直線y=3x+k(k≠0)不過第二象限,雙曲線上有兩點A(x1,y1)、B(x2,y2),若x2<x1<0,則y1與y2的大小關系是( )

查看答案和解析>>

科目:初中數學 來源:1998年浙江省紹興市中考數學試卷 題型:選擇題

(1998•紹興)已知:如圖,平行四邊形ABCD面積為12,AB邊上的高DE=3,則DC的長是( )

查看答案和解析>>

同步練習冊答案