精英家教網 > 初中數學 > 題目詳情

中,的中點,動點點出發(fā),以每秒1的速度沿的方向運動.設運動時間為,那么當         秒時,過、兩點的直線將的周長分成兩個部分,使其中一部分是另一部分的2倍.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O為原點建立平面直角坐標系,點D為線段BC的中點,動點P從點A出發(fā),以每秒4個單位的速度,沿折線AOCD向終點C運動,運動時間是t秒.
(1)D點的坐標為
 
;
(2)當t為何值時,△APD是直角三角形;
(3)如果另有一動點Q,從C點出發(fā),沿折線CBA向終點A以每秒5個單位的速度與P點同時運動,當一點到達終點時,兩點均停止運動,問:P、C、Q、A四點圍成的四邊形的面積能否為28?如果可能,求出對應的t;如果不可能,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在直角梯形COAB中,OC∥AB,以O為原點建立平面直角坐標系,A,B,C三點的坐標分別為A(8,0),B(8,10),C(0,4),點D為線段BC的中點,動點P從精英家教網點O出發(fā),以每秒1個單位的速度,沿折線OABD的路線移動,移動的時間為t秒.
(1)求直線BC的解析式;
(2)若動點P在線段OA上移動,當t為何值時,四邊形OPDC的面積是梯形COAB面積的
27
;
(3)動點P從點O出發(fā),沿折線OABD的路線移動過程中,設△OPD的面積為S,請直接寫出S與t的函數關系式,并指出自變量t的取值范圍;
(4)試探究:當動點P在線段AB上移動時,能否在線段OA上找到一點Q,使四邊形CQPD為矩形?并求出此時動點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在△ABC中,AB=AC,∠A=90°,O為BC的中點,動點E、F分別在邊AB、AC上,且∠EOF=45°.
(1)猜想線段AE、EF、CF之間的數量關系,并證明你的猜想;
(2)如圖2,若以O為圓心的圓與AB相切,試探究直線EF與⊙O的位置關系,并證明你的結論.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•三明)如圖,在矩形ABCD中,O是對角線AC的中點,動點Q從點D出發(fā),沿DC方向勻速運動到終點C,動點P從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點,連接OP,OQ.設運動時間為t,四邊形OPCQ的面積為S,那么下列圖象能大致刻畫S與t之間的關系的是( 。

查看答案和解析>>

同步練習冊答案