【題目】等邊△ABC中,點H在邊BC上,點K在邊AC上,且滿足AK=HC,連接AH、BK交于點F.
(1)如圖1,求∠AFB的度數(shù);
(2)如圖2,連接FC,若∠BFC=90°,點G為邊 AC上一點,且滿足∠GFC=30°,求證:AG⊥BG
(3)如圖3,在(2)條件下,在BF上取D使得DF=AF,連接CD交AH于E,若△DEF面積為1, 則△AHC的面積為
【答案】(1)∠AFB=120°;(2)詳見解析;(3).
【解析】試題分析: 易得: ≌ 即可求出的度數(shù).
證明是的中點,可以根據(jù)等腰三角形三線合一的性質(zhì)解答即可.
直接求解即可.
試題解析:
(1)易得: ≌
(2)在BF上取M使AF=FM,連MC延長FG交MC于N,
易得:△AFB≌△AMC,
∴∠AMC=120°,
又△AFM為等邊三角形,
∴∠AMB=∠BMC=60°,
∵∠BFC=90°,
∴∠MFC=90°,∠NFC=30°,
∴△FMN為等邊三角形,且FN=NC,
∴NC=FN=FM=AF,
∴△AGF≌△CGN,
∴AG=GC,∴BG⊥AC,
(3)
提示:延長到,使 連接
先證明四邊形是平行四邊形,進一步證明它是矩形,
設(shè) 求出的面積,
進一步求出
求得△AHC的面積.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,三邊分別為下列長度,判斷該三角形是不是直角三角形,并指出哪一個角是直角.
(1)a=,b=2,c=;
(2)a=5,b=7,c=9;
(3)a=2,b=,c=;
(4)a=5,b=2,c=1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解本校九年級男生“引體向上”項目的訓練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)本次抽取樣本容量為 , 扇形統(tǒng)計圖中A類所對的圓心角是度;
(2)請補全統(tǒng)計圖;
(3)若該校九年級男生有300名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文明,源遠流長:中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請根據(jù)所給信息,解答下列問題:
(1)a= , b=;
(2)請補全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會落在分數(shù)段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:EF∥AD ,∠1=∠2,∠BAC=70°,將求∠AGD的過程填寫完整:
因為EF∥AD,所以∠2=__
又因為∠1=∠2,所以∠1=∠3
所以AB∥__
所以∠BAC+__=180°
因為∠BAC=70°,所以∠AGD=__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形OABC中,OA=3,AB=6,以O(shè)A,OC所在的直線為坐標軸,建立如圖1的平面直角坐標系.將矩形OABC繞點O順時針方向旋轉(zhuǎn),得到矩形ODEF,當點B在直線DE上時,設(shè)直線DE和x軸交于點P,與y軸交于點Q.
(1)求證:△BCQ≌△ODQ;
(2)求點P的坐標;
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設(shè)矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請直接寫出x≤3時,S與x之間的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F,將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N.有下列四個結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結(jié)論的序號全部選對的是( )
A. ①②③
B. ①②④
C. ②③④
D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題
(1)一個暖瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定: 這兩種商品都打九折;乙商場規(guī)定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
一般地,n個相同的因數(shù)a相乘記為an,記為an.如2×2×2=23=8,此時,3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4).
(1)計算以下各對數(shù)的值:
log24= ,log216= ,log264= .
(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式,log24、log216、log264之間又滿足怎樣的關(guān)系式 。
(3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?
logaM+logaN= ;(a>0且a≠1,M>0,N>0)
(4)根據(jù)冪的運算法則:anam=an+m以及對數(shù)的含義證明上述結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com