【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長(zhǎng)CB、DA交于P,過C點(diǎn)作PD的垂線交PD的延長(zhǎng)線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長(zhǎng).
【答案】(1)詳見解析;(2);(3)DE=.
【解析】
(1)連接BD,由圓周角定理可知∠BDC=90°,即CD⊥BD,再由AB=AD可知,則OA⊥BD,由此即可得出結(jié)論;
(2)設(shè)⊙O的半徑為r,則PB=OB=OC=OA=r,再由OA∥CD可知,△OAP∽△CDP,故可得出=,故可用r表示出CD的長(zhǎng),再求出BC:DC的值即可;
(3)由OF∥CD,OB=OC根據(jù)中位線定理可以求出OF,AF;再根據(jù)勾股定理在Rt△DBC中可以求出BD,DF;接著在Rt△ADF中求出AD;然后利用平行線的性質(zhì)得∠FAD=∠CDE證明△AFD∽△DEC,利用相似三角形的對(duì)應(yīng)邊成比例可以求出DE.
(1)證明:連接BD,交OA于點(diǎn)F.
∵BC是⊙O的直徑,
∴∠BDC=90°,即CD⊥BD,
∵AB=AD,
∴
∴OA⊥BD,
∴OA∥CD;
(2)解:設(shè)⊙O的半徑為r,
∵PB=OB,
∴PB=OB=OC=OA=r,
∵OA∥CD,
∴△OAP∽△CDP,
∴=,=,解得CD=,
∴==;
(3)解:∵CD=18, CD=,∴r=12
∵OF∥CD,==,
∴OF=9,AF=3;
∵BD==6,
∴DF=BD=3,
∴AD==6;
∵∠AFD=∠DEC=90°,OA∥DC,∠FAD=∠CDE,
∴△AFD∽△DEC,
∴=,即=;
∴DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使得關(guān)于x的分式方程﹣2=有正整數(shù)解,且關(guān)于x的不等式組至少有4個(gè)整數(shù)解,那么符合條件的所有整數(shù)a的和為( )
A.﹣20B.﹣17C.﹣9D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形在平面直角坐標(biāo)系中,點(diǎn),分別在軸,軸的正半軸上,等腰直角三角形的直角頂點(diǎn)在原點(diǎn),,分別在,上,且,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得點(diǎn),旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,.
(Ⅰ)①如圖①,求的長(zhǎng);②如圖②,連接,,求證;
(Ⅱ)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,邊BC長(zhǎng)為18,高AD長(zhǎng)為12
(1)如圖,矩形EFCH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K,求的值;
(2)設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第7屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日在武漢開幕,為備戰(zhàn)本屆軍運(yùn)會(huì),某運(yùn)動(dòng)員進(jìn)行了多次打靶訓(xùn)練,現(xiàn)隨機(jī)抽取該運(yùn)動(dòng)員部分打靶成績(jī)進(jìn)行整理分析,共分成四組:(優(yōu)秀)、(良好)、(合格)、(不合格),繪制了如下不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息,解答下列問題:
(1)直接寫出本次統(tǒng)計(jì)成績(jī)的總次數(shù)和圖中的值.
(2)求扇形統(tǒng)計(jì)圖中(合格)所對(duì)應(yīng)圓心角的度數(shù).
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積為60的平行四邊形ABCD中,過點(diǎn)A作AE垂直于直線BC于點(diǎn)E,作AF垂直于直線CD于點(diǎn)F,若AB=10,BC=12,則CE+CF的值為( )
A. 22-11B.
C. 或D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,
(1)求OC的長(zhǎng)及的值;
(2)設(shè)直線BC與y軸交于P點(diǎn),當(dāng)點(diǎn)C恰好在OP的垂直平分線上時(shí),求直線BP和拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機(jī)抽取本校40名學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為 ;“經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項(xiàng)目”中,喜歡足球的人數(shù)有 人,補(bǔ)全條形統(tǒng)計(jì)圖.
(2)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項(xiàng)目是乒乓球的人數(shù)有多少人?
(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項(xiàng)目中任選兩個(gè)項(xiàng)目成立興趣小組,請(qǐng)用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個(gè)項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和都是等腰直角三角形,,的頂點(diǎn)與的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點(diǎn),射線與線段相交于點(diǎn),與射線相交于點(diǎn).
(1)求證:;
(2)求證:平分;
(3)當(dāng),,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com