科目:初中數(shù)學 來源:廣東省汕頭市潮陽區(qū)2011年初中畢業(yè)生學業(yè)考試模擬考數(shù)學試題 題型:044
閱讀下面的材料:
在平面幾何中,我們學過兩條直線平行和垂直的定義.下面就兩個一次函數(shù)的圖象所確定的兩條直線,給出它們平行和垂直的定義:設一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直l2,若k1=k2,且b1≠b2,則直線l1與直線l1互相平行.若k1·k2=-1,則直線l1與直線l2互相垂直.
解答下面的問題:
(1).求過點P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達式.
(2).設直線l分別與y軸、x軸交于點A、B,如果直線m:y=kx+t(t>0)與直線l垂直且交y軸于點C,求出△ABC的面積S關于t的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣西柳州卷)數(shù)學 題型:選擇題
如圖,直線l:y=x+2與y軸交于點A,將直線l繞點A旋轉90º后,所得直
線的解析式為【 】
A.y=x-2 B.y=-x+2
C.y=-x-2 D.y=-2x-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,點0是坐標原點,直線y=x+4分別交x軸、Y軸于點A、點B,直
線y=-2x+b分別交x軸、y軸于點C、點D,且0C=20B.設直線AB、CD相交于點E.
(1)求直線CD的解析式; ‘
(2)動點P從點B出發(fā)沿線段BC以每秒鐘個單位的速度向點C勻速移動,同時動點
Q從點D出發(fā)沿線段DC以每秒鐘2個單位的速度向點C勻速移動,當P到達點C時,點
Q同時停止移動.設P點移動的時間為t秒,PQ的長為d(d≠0),求d與t之間的函數(shù)關系式,
并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,在P、Q.的運動過程中,設直線PQ、直線AB相交于點N.當t為何值時,
?并判斷此時以點Q為圓心,以3為半徑的⊙Q與直線AB位置關系,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com