如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,
連結PQ.以下結論正確的有( 。﹤
①PQ∥AE;②AP=BQ;③∠AOB=60°;④CP=CQ;⑤連接OC,則OC平分∠AOE.
分析:由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)△CQB≌△CPA(ASA),可知CP=CQ正確;利用等邊三角形的性質,BC∥DE,再根據(jù)平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,再利用四點共圓得出以及圓心角定理OC平分∠AOE.
解答:解:∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中
AC=CB
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS),
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
在△CQB和△CPA中
∠CBQ=∠CAP
CB=AC
∠BCQ=∠ACP

∴△CQB≌△CPA(ASA),
∴CP=CQ,故④正確;
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE①正確,
∵△CQB≌△CPA,
∴AP=BQ②正確,
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等邊△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
∴③正確;
連接CO,
∵∠BOA=60°,
∴∠AOE=120°,
∵∠PCQ=60°,
∴O、P、C、Q四點共圓,
∵PC=CQ,
∴∠POC=∠QOC,
∴OC平分∠AOE.
故5個選項都正確.
故選:D.
點評:本題考查了等邊三角形的性質、全等三角形的判定與性質和平行線的判定以及四點共圓等知識,熟練應用三角形全等的證明是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,C為線段AE上一動點,(不與A,E重合),在AE同側分別作等邊三角形ABC和CDE.則以下結論:①AD=BE  ②CP=CQ  ③AP=BQ   ④DE=DP  ⑤PQ∥AE中正確的有
①②③⑤
.并證明其中的一個結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正確的結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,C為線段AE上一動點(不與A、E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ,以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與點A、E重合),在AE同側分別作等邊△ABC和等邊△CDE,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.
求證:△PCQ為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與A,E重合)在AE同側分別作等邊△ABC和等邊△CDE,AD與BE相交于點O,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.請你寫出三個正確的結論:
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°

查看答案和解析>>

同步練習冊答案