若4x2+5x+k有一個(gè)因式是4x-3,則k的值是


  1. A.
    -6
  2. B.
    6
  3. C.
    8
  4. D.
    -8
A
分析:多項(xiàng)式4x2+5x+k分解因式后的一個(gè)因式是4x-3,所以當(dāng)x=時(shí)多項(xiàng)式的值為0,由此得到關(guān)于k的方程,解方程即可求k的值.
解答:∵x的多項(xiàng)式4x2+5x+k分解因式后的一個(gè)因式是4x-3,
∴當(dāng)x=時(shí)多項(xiàng)式的值為0,
+5×+k=0,
解得:k=-6.
故選A.
點(diǎn)評(píng):本題考查了因式分解的意義,解法不止一種,同學(xué)們可以利用對(duì)應(yīng)項(xiàng)系數(shù)相等的方法求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

5、閱讀理解:
若p、q、m為整數(shù),且三次方程x3+px2+qx+m=0有整數(shù)解c,則將c代入方程得:c3+pc2+qc+m=0,移項(xiàng)得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q與c及m都是整數(shù),所以c是m的因數(shù).上述過程說明:整數(shù)系數(shù)方程x3+px2+qx+m=0的整數(shù)解只可能是m的因數(shù).例如:方程x3+4x2+3x-2=0中-2的因數(shù)為±1和±2,將它們分別代入方程x3+4x2+3x-2=0進(jìn)行驗(yàn)證得:x=-2是該方程的整數(shù)解,-1,1,2不是方程的整數(shù)解.
解決問題:
(1)根據(jù)上面的學(xué)習(xí),請(qǐng)你確定方程x3+x2+5x+7=0的整數(shù)解只可能是哪幾個(gè)整數(shù)?
(2)方程x3-2x2-4x+3=0是否有整數(shù)解?若有,請(qǐng)求出其整數(shù)解;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)分解下列因式,將結(jié)果直接寫在橫線上:
x2-6x+9=
(x-3)2
(x-3)2
,25x2+10x+1=
(5x+1)2
(5x+1)2
,4x2+12x+9=
(2x+3)2
(2x+3)2

(2)觀察上述三個(gè)多項(xiàng)式的系數(shù),有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜測(cè):若多項(xiàng)式ax2+bx+c(a>0)是完全平方式,那么系數(shù)a、b、c之間一定存在某種關(guān)系.請(qǐng)你用數(shù)學(xué)式子表示小明的猜想.
b2=4ac
b2=4ac
(說明:如果你沒能猜出結(jié)果,就請(qǐng)你再寫出一個(gè)與(1)中不同的完全平方式,并寫出這個(gè)式中個(gè)系數(shù)之間的關(guān)系.)
(3)若多項(xiàng)式x2+ax+c和x2+cx+a都是完全平方式,利用(2)中的規(guī)律求ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若4x2+5x+k有一個(gè)因式是4x-3,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:常德 題型:解答題

閱讀理
若p、q、m為整數(shù),且三次方程x3+px2+qx+m=0有整數(shù)解c,則將c代入方程得:c3+pc2+qc+m=0,移項(xiàng)得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q與c及m都是整數(shù),所以c是m的因數(shù).上述過程說明:整數(shù)系數(shù)方程x3+px2+qx+m=0的整數(shù)解只可能是m的因數(shù).例如:方程x3+4x2+3x-2=0中-2的因數(shù)為±1和±2,將它們分別代入方程x3+4x2+3x-2=0進(jìn)行驗(yàn)證得:x=-2是該方程的整數(shù)解,-1,1,2不是方程的整數(shù)解.
解決問題:
(1)根據(jù)上面的學(xué)習(xí),請(qǐng)你確定方程x3+x2+5x+7=0的整數(shù)解只可能是哪幾個(gè)整數(shù)?
(2)方程x3-2x2-4x+3=0是否有整數(shù)解?若有,請(qǐng)求出其整數(shù)解;若沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案