(2012•廣元)下面的四個圖案中,既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有(  )
分析:根據(jù)旋轉(zhuǎn)、軸對稱的定義來分析.
圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞某個固定點旋轉(zhuǎn)固定角度的位置移動;
軸對稱是指如果一個圖形沿一條直線折疊,直線兩側(cè)的圖形能夠互相重合,就是軸對稱.
解答:解:圖形1可以旋轉(zhuǎn)90°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;
圖形2可以旋轉(zhuǎn)180°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;
圖形3可以旋轉(zhuǎn)180°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;
圖形4可以旋轉(zhuǎn)90°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合.
故既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有4個.
故選A.
點評:考查了旋轉(zhuǎn)和軸對稱的性質(zhì).①旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變,兩組對應(yīng)點連線的交點是旋轉(zhuǎn)中心;②軸對稱圖形的對應(yīng)線段、對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣元)某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200m3的生活垃圾運走.
(1)假如每天能運xm3,所需時間為y天,寫出y與x之間的函數(shù)關(guān)系式;
(2)若每輛拖拉機一天能運12m3,則5輛這樣的拖拉機要用多少天才能運完?
(3)在(2)的情況下,運了8天后,剩下的任務(wù)要在不超過6天的時間完成,那么至少需要增加多少輛這樣的拖拉機才能按時完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣元)如圖,在矩形ABCD中,AO=3,tan∠ACB=
43
.以O(shè)為坐標(biāo)原點,OC為x軸,OA為y軸建立平面直角坐標(biāo)系,設(shè)D、E分別是線段AC、OC上的動點,它們同時出發(fā),點D以每秒3個單位的速度從點A向點C運動,點E以每秒1個單位的速度從點C向點O運動.設(shè)運動時間為t(秒)
(1)求直線AC的解析式;
(2)用含t的代數(shù)式表示點D的坐標(biāo);
(3)在t為何值時,△ODE為直角三角形?
(4)在什么條件下,以Rt△ODE的三個頂點能確定一條對稱軸平行于y軸的拋物線?并請選擇一種情況,求出所確定的拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案