【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2 ,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說明理由;
(3)①求證: = ;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
【答案】
(1)(2 ,2)
(2)
解:存在.理由如下:
連接BE,取BE的中點(diǎn)K,連接DK、KC.
∵∠BDE=∠BCE=90°,
∴KD=KB=KE=KC,
∴B、D、E、C四點(diǎn)共圓,
∴∠DBC=∠DCE,∠EDC=∠EBC,
∵tan∠ACO= = ,
∴∠ACO=30°,∠ACB=60°
①如圖1中,△DEC是等腰三角形,觀察圖象可知,只有ED=EC,
∴∠DBC=∠DCE=∠EDC=∠EBC=30°,
∴∠DBC=∠BCD=60°,
∴△DBC是等邊三角形,
∴DC=BC=2,
在Rt△AOC中,∵∠ACO=30°,OA=2,
∴AC=2AO=4,
∴AD=AC﹣CD=4﹣2=2.
∴當(dāng)AD=2時(shí),△DEC是等腰三角形.
②如圖2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,
∴∠ABD=∠ADB=75°,
∴AB=AD=2 ,
綜上所述,滿足條件的AD的值為2或2
(3)
解:①由(2)可知,B、D、E、C四點(diǎn)共圓,
∴∠DBC=∠DCE=30°,
∴tan∠DBE= ,
∴ = .
②如圖2中,作DH⊥AB于H.
在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
∴DH= AD= x,AH= = x,
∴BH=2 ﹣ x,
在Rt△BDH中,BD= = ,
∴DE= BD= ,
∴矩形BDEF的面積為y= [ ]2= (x2﹣6x+12),
即y= x2﹣2 x+4 ,
∴y= (x﹣3)2+ ,
∵ >0,
∴x=3時(shí),y有最小值 .
【解析】解:(1)∵四邊形AOCB是矩形,
∴BC=OA=2,OC=AB=2 ,∠BCO=∠BAO=90°,
∴B(2 ,2).
所以答案是(2 ,2).
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是;
(2)通過“電視”了解新聞的人數(shù)占被調(diào)查人數(shù)的百分比為;扇形統(tǒng)計(jì)圖中,“手機(jī)上網(wǎng)”所對(duì)應(yīng)的圓心角的度數(shù)是;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有70萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y= x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動(dòng)點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1 , △BCE的面積為S2 , 求 的最大值;
②過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB= AC,E是AC的中點(diǎn),
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A>∠B.
(1)作邊AB的垂直平分線DE,與AB,BC分別相交于點(diǎn)D,E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,連接AE,若∠B=50°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于第一象限內(nèi)的P( ,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).
(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;
(2)寫出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P'的坐標(biāo);
(3)求∠P'AO的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,∠DAC=65°,點(diǎn)E是CD上一點(diǎn),BE交AC于點(diǎn)F,將△BCE沿BE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)C′處,則∠AFC′= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多多班長(zhǎng)統(tǒng)計(jì)去年1~8月“書香校園”活動(dòng)中全班同學(xué)的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計(jì)圖,下列說法正確的是( )
A.極差是47
B.眾數(shù)是42
C.中位數(shù)是58
D.每月閱讀數(shù)量超過40的有4個(gè)月
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年12月28日“青煙威榮”城際鐵路正式開通,從煙臺(tái)到北京的高鐵里程比普快里程縮短了81千米,運(yùn)行時(shí)間減少了9小時(shí),已知煙臺(tái)到北京的普快列車?yán)锍碳s為1026千米,高鐵平均時(shí)速為普快平均時(shí)速的2.5倍.
(1)求高鐵列車的平均時(shí)速;
(2)某日王老師要去距離煙臺(tái)大約630千米的某市參加14:00召開的會(huì)議,如果他買到當(dāng)日8:40從煙臺(tái)至城市的高鐵票,而且從該市火車站到會(huì)議地點(diǎn)最多需要1.5小時(shí),試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下他能在開會(huì)之前到達(dá)嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com