(2007•桂林)已知:如圖,△ABC關(guān)于y軸對稱,點B、P關(guān)于y軸的對稱點分別是點C、Q.BP=AP=2,且P點坐標(biāo)為(-1,0).
(1)分別寫出Q點和C點的坐標(biāo),并指出△ABP關(guān)于y軸的對稱三角形;
(2)M為線段CQ上一點,若以x軸為旋轉(zhuǎn)軸,旋轉(zhuǎn)△PAM一周形成的旋轉(zhuǎn)體的全面積為5π,求線段AM的長;
(3)N為線段AM上一動點(與點A、M不重合),過點N分別作NH⊥x軸于H,NG⊥y軸于G.求當(dāng)矩形OHNG的面積最大時N點的坐標(biāo).

【答案】分析:(1)P,Q關(guān)于y軸對稱,那么Q的坐標(biāo)應(yīng)該是(1,0),BP=2,那么CQ=2,因此C的坐標(biāo)是(3,0),由于B,P關(guān)于y軸的對稱點分別是C,Q,那么三角形ABP關(guān)于y軸的對稱三角形就應(yīng)該是ACQ;
(2)旋轉(zhuǎn)一周得出的圖形應(yīng)該是兩個圓錐的組合體,也就是以O(shè)A為底面圓半徑,AM和AP為母線長的兩個圓錐.那么關(guān)鍵是求出OA的長,可在直角三角形AOM中,根據(jù)AP,OP的長,求出OA的值,然后根據(jù)圓錐體全面積的計算方法表示出圓錐的全面積(這里不應(yīng)該算底面圓),進(jìn)而得出AM的值;
(3)求矩形的面積關(guān)鍵是求N點的坐標(biāo),那么就必須先求出AM所在直線的解析式,根據(jù)直線過A點,我們可將直線設(shè)成y=kx+,然后根據(jù)直線過M點,而OM可以在直角三角形AMO中求出,也就能得出M的坐標(biāo),然后用待定系數(shù)法求出函數(shù)的解析式,這樣,可根據(jù)矩形的面積公式,以N的橫坐標(biāo)的絕對值當(dāng)矩形的寬,以N的縱坐標(biāo)的絕對值當(dāng)矩形的長,以此可得出關(guān)于矩形的面積與橫坐標(biāo)的函數(shù)關(guān)系式,然后根據(jù)函數(shù)的性質(zhì)判定出x為什么值時,矩形的面積最大,然后將x的值代入AM所在直線的解析式中得出N點的坐標(biāo).
解答:解:(1)Q點坐標(biāo)為(1,0);C點坐標(biāo)為(3,0);△ABP與△ACQ關(guān)于y軸對稱;

(2)在Rt△AOP中,∵AP=2,PO=1,AO==,依題意有:
×2π×2+×2π×AM=5π,∴AM=3;

(3)在Rt△AOM中,∵AO=,AM=3,
∴OM==,
∴點M的坐標(biāo)為(,0),設(shè)直線AM的解析式為:y=kx+,
∵直線AM經(jīng)過點M(,0),k+=0,k=-
∴直線AM的解析式為:y=-x+.設(shè)點N的坐標(biāo)為(x,y),
則S矩形AGOH=xy=x(-x+)=-x2+x=-(x-2+,
∴當(dāng)x=時,矩形NGOH的面積取得最大值,
此時y=-x+=
∴點N的坐標(biāo)為(,).
點評:本題主要考查了對稱的性質(zhì),一次函數(shù)及二次函數(shù)的實際應(yīng)用等知識點,根據(jù)對稱得出各邊的長是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2007•桂林)已知:如圖,△ABC關(guān)于y軸對稱,點B、P關(guān)于y軸的對稱點分別是點C、Q.BP=AP=2,且P點坐標(biāo)為(-1,0).
(1)分別寫出Q點和C點的坐標(biāo),并指出△ABP關(guān)于y軸的對稱三角形;
(2)M為線段CQ上一點,若以x軸為旋轉(zhuǎn)軸,旋轉(zhuǎn)△PAM一周形成的旋轉(zhuǎn)體的全面積為5π,求線段AM的長;
(3)N為線段AM上一動點(與點A、M不重合),過點N分別作NH⊥x軸于H,NG⊥y軸于G.求當(dāng)矩形OHNG的面積最大時N點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(10)(解析版) 題型:解答題

(2007•桂林)已知:如圖,△ABC關(guān)于y軸對稱,點B、P關(guān)于y軸的對稱點分別是點C、Q.BP=AP=2,且P點坐標(biāo)為(-1,0).
(1)分別寫出Q點和C點的坐標(biāo),并指出△ABP關(guān)于y軸的對稱三角形;
(2)M為線段CQ上一點,若以x軸為旋轉(zhuǎn)軸,旋轉(zhuǎn)△PAM一周形成的旋轉(zhuǎn)體的全面積為5π,求線段AM的長;
(3)N為線段AM上一動點(與點A、M不重合),過點N分別作NH⊥x軸于H,NG⊥y軸于G.求當(dāng)矩形OHNG的面積最大時N點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•桂林)已知:如圖,△ABC關(guān)于y軸對稱,點B、P關(guān)于y軸的對稱點分別是點C、Q.BP=AP=2,且P點坐標(biāo)為(-1,0).
(1)分別寫出Q點和C點的坐標(biāo),并指出△ABP關(guān)于y軸的對稱三角形;
(2)M為線段CQ上一點,若以x軸為旋轉(zhuǎn)軸,旋轉(zhuǎn)△PAM一周形成的旋轉(zhuǎn)體的全面積為5π,求線段AM的長;
(3)N為線段AM上一動點(與點A、M不重合),過點N分別作NH⊥x軸于H,NG⊥y軸于G.求當(dāng)矩形OHNG的面積最大時N點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•桂林)在實施漓江補(bǔ)水工程中,某水庫需要將一段護(hù)坡土壩進(jìn)行改造.在施工質(zhì)量相同的情況下,甲、乙兩施工隊給出的報價分別是:甲施工隊先收啟動資金1000元,以后每填土1立方米收費20元,乙施工隊不收啟動資金,但每填土1立方米收費25元.
(1)設(shè)整個工程需要填土為X立方米,選擇甲施工隊所收的費用為Y元,選擇乙施工隊所收的費用為Y元.請分別寫出Y、Y、關(guān)于X的函數(shù)關(guān)系式;
(2)如圖,土壩的橫截面為梯形,現(xiàn)將背水坡壩底加寬2米,即BE=2米,已知原背水坡長AB=4,土壩與地面的傾角∠ABC=60度,要改造100米長的護(hù)坡土壩,選擇哪家施工隊所需費用較少?
(3)如果整個工程所需土方的總量X立方米的取值范圍是100≤X≤800,應(yīng)選擇哪家施工隊所需費用較少?

查看答案和解析>>

同步練習(xí)冊答案