19、已知,如圖,點(diǎn)A,D,B,E在同一條直線上,且AD=BE,∠A=∠FDE,在①AC=DF,②∠CBA=∠E,③∠C=∠F中,請(qǐng)選擇其中一個(gè)條件,證明△ABC≌△DEF.
(1)你選擇的條件是
①或②或③
(只需填寫(xiě)序號(hào));
(2)證明.
分析:本題要判定△ABC≌△DEF,已知AD=BE,可證AB=DE,又已知∠A=∠FDE,具備了一組邊和一組角對(duì)應(yīng)相等,故可分別選擇其中一個(gè)條件①AC=DF,②∠CBA=∠E,③∠C=∠F中,分別根據(jù)SAS,ASA,AAS證明△ABC≌△DEF.
解答:解:(1)添加條件①AC=DF.
證明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
AB=DE,
∠A=∠FDE,
AC=DF,
∴△ABC≌△DEF(SAS).

(2)添加條件②∠CBA=∠E.
證明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
AB=DE,
∠CBA=∠E,
∴△ABC≌△DEF(ASA).

(3)添加條件③∠C=∠F.
證明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
∠C=∠F,
AB=DE,
∴△ABC≌△DEF(AAS).
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.這種類型的題目一定要結(jié)合已知在圖形上的位置,依據(jù)全等的判斷方法進(jìn)行添加.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知:如圖,點(diǎn)O為?ABCD的對(duì)角線BD的中點(diǎn),直線EF經(jīng)過(guò)點(diǎn)O,分別交BA、DC的延長(zhǎng)線于點(diǎn)E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)A、B分別在x軸、y軸上,以O(shè)A為直徑的⊙P交AB于點(diǎn)C(-
2
5
,
4
5
)
,E為直徑精英家教網(wǎng)OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合).EF⊥AB于點(diǎn)F,交y軸于點(diǎn)G.設(shè)點(diǎn)E的橫坐標(biāo)為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)A、B、C、D在同一條直線上,EA⊥AD,F(xiàn)D⊥AD,AE=DF,AB=DC.BF,CE相交于點(diǎn)O.
(1)求證:∠ACE=∠DBF;
(2)若點(diǎn)B是AC的中點(diǎn),∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm,PT切⊙O于T,過(guò)P點(diǎn)作⊙O的割線PAB,(PB>PA).設(shè)PA=x,PB=y,求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點(diǎn)E、A、C在同一條直線上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案