已知一個(gè)正數(shù)m的平方根是3a+1和a+11.
(1)求這個(gè)正數(shù)m;
(2)計(jì)算m的立方根.

解:(1)根據(jù)題意得:3a+1+a+11=0,
解得:a=-3,
則m=64;

(2)根據(jù)題意得:m的立方根為4.
分析:(1)根據(jù)平方根的定義得到3a+1與a+11互為相反數(shù),求出a的值,即可確定出m的值;
(2)利用立方根的定義求出m的立方根即可.
點(diǎn)評(píng):此題考查了平方根,立方根,熟練掌握定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、我們知道正數(shù)和零統(tǒng)稱非負(fù)數(shù),同學(xué)們已經(jīng)學(xué)過有
絕對(duì)值
平方
的結(jié)果都是非負(fù)數(shù),你能總結(jié)非負(fù)數(shù)的基本性質(zhì)是
幾個(gè)非負(fù)數(shù)的和為0,則每一個(gè)非負(fù)數(shù)均為0
.你能利用這個(gè)性質(zhì)解答下列題嗎?
已知(a-2)2+(b+3)2+|c-5|=0,求a-2b+c2值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、我們已經(jīng)知道,利用圖形面積可以解釋代數(shù)恒等式的正確性.如完全平方公式可以用圖1的面積表示.
(1)根據(jù)圖2寫出一個(gè)代數(shù)恒等式
2a2+3ab+b2=(2a+b)(a+b)
;
(2)其實(shí)圖形的面積也可以解釋不等式的正確性.如已知正數(shù)a、b、c和m、n、l,并且滿足a+m=b+n=c+l=k.試構(gòu)造邊長(zhǎng)為k的正方形,利用其來說明al+bm+cn<k2的正確性.請(qǐng)你畫出圖形,并簡(jiǎn)單解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•赤峰)閱讀材料:
(1)對(duì)于任意兩個(gè)數(shù)a、b的大小比較,有下面的方法:
當(dāng)a-b>0時(shí),一定有a>b;
當(dāng)a-b=0時(shí),一定有a=b;
當(dāng)a-b<0時(shí),一定有a<b.
反過來也成立.因此,我們把這種比較兩個(gè)數(shù)大小的方法叫做“求差法”.
(2)對(duì)于比較兩個(gè)正數(shù)a、b的大小時(shí),我們還可以用它們的平方進(jìn)行比較:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)與(a-b)的符號(hào)相同
當(dāng)a2-b2>0時(shí),a-b>0,得a>b
當(dāng)a2-b2=0時(shí),a-b=0,得a=b
當(dāng)a2-b2<0時(shí),a-b<0,得a<b
解決下列實(shí)際問題:
(1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問題:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②請(qǐng)你分析誰用的紙面積最大.
(2)如圖1所示,要在燃?xì)夤艿纋上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:

方案一:如圖2所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a1=AB+AP.
方案二:如圖3所示,點(diǎn)A′與點(diǎn)A關(guān)于l對(duì)稱,A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③請(qǐng)你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué)(帶解析) 題型:解答題

閱讀材料:
(1)對(duì)于任意兩個(gè)數(shù)的大小比較,有下面的方法:
當(dāng)時(shí),一定有;
當(dāng)時(shí),一定有;
當(dāng)時(shí),一定有
反過來也成立.因此,我們把這種比較兩個(gè)數(shù)大小的方法叫做“求差法”.
(2)對(duì)于比較兩個(gè)正數(shù)的大小時(shí),我們還可以用它們的平方進(jìn)行比較:

∴()與()的符號(hào)相同
當(dāng)>0時(shí),>0,得
當(dāng)=0時(shí),=0,得
當(dāng)<0時(shí),<0,得
解決下列實(shí)際問題:
(1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問題:
①W1=             (用x、y的式子表示)
W2=             (用x、y的式子表示)
②請(qǐng)你分析誰用的紙面積最大.
(2)如圖1所示,要在燃?xì)夤艿纋上修建一個(gè)泵站,分別向A.B兩鎮(zhèn)供氣,已知A.B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:

方案一:如圖2所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a1=AB+AP.
方案二:如圖3所示,點(diǎn)A′與點(diǎn)A關(guān)于l對(duì)稱,A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a2=AP+BP.
①在方案一中,a1=             km(用含x的式子表示);
②在方案二中,a2=   km(用含x的式子表示);
③請(qǐng)你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué)(解析版) 題型:解答題

閱讀材料:

(1)對(duì)于任意兩個(gè)數(shù)的大小比較,有下面的方法:

當(dāng)時(shí),一定有

當(dāng)時(shí),一定有;

當(dāng)時(shí),一定有

反過來也成立.因此,我們把這種比較兩個(gè)數(shù)大小的方法叫做“求差法”.

(2)對(duì)于比較兩個(gè)正數(shù)的大小時(shí),我們還可以用它們的平方進(jìn)行比較:

∴()與()的符號(hào)相同

當(dāng)>0時(shí),>0,得

當(dāng)=0時(shí),=0,得

當(dāng)<0時(shí),<0,得

解決下列實(shí)際問題:

(1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問題:

①W1=              (用x、y的式子表示)

W2=              (用x、y的式子表示)

②請(qǐng)你分析誰用的紙面積最大.

(2)如圖1所示,要在燃?xì)夤艿纋上修建一個(gè)泵站,分別向A.B兩鎮(zhèn)供氣,已知A.B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:

方案一:如圖2所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a1=AB+AP.

方案二:如圖3所示,點(diǎn)A′與點(diǎn)A關(guān)于l對(duì)稱,A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a2=AP+BP.

①在方案一中,a1=              km(用含x的式子表示);

②在方案二中,a2=    km(用含x的式子表示);

③請(qǐng)你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案