【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小亮行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍.小穎在小亮出發(fā)后50min 才乘上纜車,纜車的平均速度為180m/min.設(shè)小亮出發(fā)x min后行走的路程為y m,圖中的折線表示小亮在整個(gè)行走過(guò)程中y與x的函數(shù)關(guān)系.
(1)小亮行走的總路程是m,他途中休息了min;
(2)①當(dāng)50≤x≤80時(shí),求y與x的函數(shù)關(guān)系式; ②當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是多少?

【答案】
(1)3600;20
(2)解:①當(dāng)50≤x≤80時(shí),設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,

根據(jù)題意,當(dāng)x=50時(shí),y=1950;當(dāng)x=80時(shí),y=3600

解得:

∴函數(shù)關(guān)系式為:y=55x﹣800.

②纜車到山頂?shù)木路長(zhǎng)為3600÷2=1800米,

纜車到達(dá)終點(diǎn)所需時(shí)間為1800÷180=10分鐘

小穎到達(dá)纜車終點(diǎn)時(shí),小亮行走的時(shí)間為10+50=60分鐘,

把x=60代入y=55x﹣800,得y=55×60﹣800=2500.

∴當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是3600﹣2500=1100米


【解析】解:(1)3600,20; (1)縱坐標(biāo)為小亮行走的路程,其休息的時(shí)間為縱坐標(biāo)不隨x的值的增加而增加;(2)根據(jù)當(dāng)50≤x≤80時(shí)函數(shù)圖象經(jīng)過(guò)的兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求得函數(shù)的解析式即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】徐州至上海的鐵路里程為650km.從徐州乘“C”字頭列車A,“D”字頭列車B都可到達(dá)上海,已知A車的平均速度為B車的2倍,且行駛時(shí)間比B車少2.5h.
(1)設(shè)A車的平均速度是xkm/h,根據(jù)題意,可列分式方程:
(2)求A車的平均速度及行駛時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是面積為 的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點(diǎn)F,則△AEF的面積等于(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:22+(﹣1)4+( ﹣2)0﹣|﹣3|;
(2)先化簡(jiǎn),再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情境】 已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最小?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為y=2(x+ )(x>0).
【探索研究】
(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+ (x>0)的圖象和性質(zhì). ①填寫下表,畫出函數(shù)的圖象;

x

1

2

3

4

y

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時(shí),除了通過(guò)觀察圖象,還可以通過(guò)配方得到.請(qǐng)你通過(guò)配方求函數(shù)y=x+ (x>0)的最小值.
(2)用上述方法解決“問(wèn)題情境”中的問(wèn)題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,是中心對(duì)稱但不是軸對(duì)稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, 中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長(zhǎng)線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動(dòng)點(diǎn)。

(1)求證DA是⊙O的切線;
(2)DP的長(zhǎng)度為多少時(shí),∠BPC的度數(shù)最大,最大度數(shù)是多少?請(qǐng)說(shuō)明理由。
(3)點(diǎn)P運(yùn)動(dòng)的過(guò)程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個(gè)最小值,若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測(cè)試,各項(xiàng)成績(jī)?nèi)缦拢▎挝唬悍郑?

數(shù)與代數(shù)

空間與圖形

統(tǒng)計(jì)與概率

綜合與實(shí)踐

學(xué)生甲

90

93

89

90

學(xué)生乙

94

92

94

86


(1)分別計(jì)算甲、乙成績(jī)的中位數(shù);
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績(jī)按3:3:2:2計(jì)算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績(jī)分別為多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABCD的邊AB延長(zhǎng)到點(diǎn)E,使BE=AB,連接DE,交邊BC于點(diǎn)F.
(1)求證:△BEF≌△CDF;
(2)連接BD、CE,若∠BFD=2∠A,求證:四邊形BECD是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案