【題目】如圖,正方形OABC繞著點(diǎn)O逆時針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)

【答案】25°

【解析】

先利用正方形的性質(zhì)得OA=OC,∠AOC=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC=OF,∠COF=40°,則OA=OF,根據(jù)等腰三角形的性質(zhì)得∠OAF=OFA,然后根據(jù)三角形的內(nèi)角和定理計(jì)算∠OFA的度數(shù).

解:∵四邊形OABC為正方形,

OA=OC,∠AOC=90°,

∵正方形OABC繞著點(diǎn)O逆時針旋轉(zhuǎn)40°得到正方形ODEF

OC=OF,∠COF=40°,

OA=OF

∴∠OAF=OFA,

∵∠AOF=AOC+COF=90°+40°=130°,

∴∠OFA=180°-130°)=25°.

故答案為25°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1,與x軸的另一個交點(diǎn)為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時如下結(jié)論:①這個函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時,yx的增大而增大,則m的取值范圍為m≥2其中錯誤結(jié)論的序號是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“美麗泰州”的工作部署,市政府計(jì)劃對城區(qū)道路進(jìn)行改造,現(xiàn)安排甲、乙兩個工程隊(duì)完成該改造工作.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造720米的道路比乙隊(duì)改造同樣長的道路少用4.

(1)甲、乙兩工程隊(duì)每天能改造道路的長度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬元,乙隊(duì)工作一天需付費(fèi)用5萬元,若需改造的道路全長2400米,改造總費(fèi)用不超過195萬元,則至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn):把一根長為的鐵絲剪成兩段,并把每一段各圍成一個正方形.

1)若設(shè)其中的一個正方形邊長為,則另一個正方形邊長為_____

2)要使這兩個正方形的面積之和等于,兩段長分別是多少?

3)若要使得這兩個正方形的面積之和最小,兩段長分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過點(diǎn)B(1,﹣3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點(diǎn)A.

(1)求拋物線的解析式,并根據(jù)圖象直接寫出當(dāng)y≤0時,自變量x的取值范圖;

(2)在第二象限內(nèi)的拋物線上有一點(diǎn)P,當(dāng)PABA時,求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+b的圖象與直線yx+2相交于點(diǎn)A1m),點(diǎn)Bn0).

1)求二次函數(shù)的解析式,并寫出該拋物線的對稱軸和頂點(diǎn)坐標(biāo);

2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線的圖象;

x

……

   

   

   

   

   

……

y

……

   

   

   

   

   

……

3)畫出這兩個函數(shù)的圖象,并結(jié)合圖象直接寫出ax2+bx+2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ax軸上,點(diǎn)Cy軸上,點(diǎn)B在函數(shù)y (k0,x0)的圖象上,點(diǎn)P(m,n)是函數(shù)y (k0,x0)的圖象上任一點(diǎn),過點(diǎn)P分別作x軸、y軸的垂線,垂足分別為EF,并設(shè)矩形OEPF和正方形OABC不重合部分的面積為S.

(1)求點(diǎn)B的坐標(biāo)和k的值;

(2)當(dāng)S時,求點(diǎn)P的坐標(biāo);

(3)寫出S關(guān)于m的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(l,1),點(diǎn)Bx軸正半軸上,點(diǎn)D在第三象限的雙曲線y=上,過點(diǎn)CCE//x軸交雙曲線于點(diǎn)E,連接BE,則△BCE的面積為________

查看答案和解析>>

同步練習(xí)冊答案