如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.
(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.
(2)若AC=6,AB=10,連結AD,求⊙O的半徑和AD的長.
(1)證明:如圖1,連接OD、OE、ED.
∵BC與⊙O相切于一點D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等邊三角形,
∴AE=AO=0D,
∴四邊形AODE是平行四邊形,
∵OA=OD,
∴四邊形AODE是菱形.
(2)解:設⊙O的半徑為r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即8r=6(8﹣r).
解得r=,
∴⊙O的半徑為.
如圖2,連接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直徑,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC•AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
科目:初中數(shù)學 來源:2014-2015學年江蘇省濱?h八年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分10分)
某校為了解“陽光體育”活動的開展情況,從全校名學生中,隨機抽取部分學生進行問卷調查(每名學生只能填寫一項自己喜歡的活動項目),并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)被調查的學生共有 人,并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,= ,= ,表示區(qū)域的圓心角為 °;
(3)全校學生中喜歡籃球的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在直角坐標系中,將點(﹣2,3)關于原點的對稱點向左平移2個單位長度得到的點的坐標是( 。
| A. | (4,﹣3) | B. | (﹣4,3) | C. | (0,﹣3) | D. | (0,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com