(1)解:OE=OF.理由如下:
∵CE是∠ACB的角平分線,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵OF是∠BCA的外角平分線,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)解:當∠ACB=90°,點O在AC的中點時,
∵OE=OF,
∴四邊形AECF是正方形;
(3)解:不可能.
如圖所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
∠ACB+
∠ACD=
(∠ACB+∠ACD)=90°,
若四邊形BCFE是菱形,則BF⊥EC,
但在△GFC中,不可能存在兩個角為90°,所以不存在其為菱形.
分析:(1)探究問題,也就是證明問題,可以先假設,題中OE,OF可通過平行線,角平分線確定二者之間的關系.
(2)正方形的判定問題,AECF若是正方形,則必有對角線OA=OC,所以O為AC的中點,同樣在△ABC中,當∠ACB=90°時,可滿足其為正方形.
(3)菱形的判定問題,若使菱形,則必有四條邊相等,對角線互相垂直.
點評:熟練掌握菱形及正方形的性質及判定定理,能夠解決一些簡單的運動問題.