證明:(1)∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)由(2)知,△ADB≌△CEA,
BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均為等邊三角形,
∴∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵BF=AF
在△DBF和△EAF中
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF為等邊三角形.
分析:(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90°,而∠BAC=90°,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA,
則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)與(1)的證明方法一樣;
(3)與前面的結論得到△ADB≌△CEA,則BD=AE,∠DBA=∠CAE,根據(jù)等邊三角形的性質得∠ABF=∠CAF=60°,則∠DBA+∠ABF=∠CAE+∠CAF,則∠DBF=∠FAE,
利用“SAS”可判斷△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根據(jù)等邊三角形的判定方法可得到△DEF為等邊三角形.
點評:本題考查了全等三角形的判定與性質:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應邊相等.也考查了等邊三角形的判定與性質.