已知一組兩兩不等的四位數(shù),它們的最大公約數(shù)是42,最小公倍數(shù)是90090.問這組四位數(shù)最多能有多少個?它們的和是多少?
分析:①根據(jù)題意先設這組四位數(shù)共n個,又知它們的最大公約數(shù)是42,從而得知其中的每個ai=42xi是四位數(shù),所以1000≤42xi<10000,繼而得出答案;②已知一組兩兩不等的四位數(shù),最小公倍數(shù)是90090,結(jié)合①可知xi是由3,5,11,13每個至多用一次組合成的在23和239之間的自然數(shù),并且兩兩不同.其中兩個質(zhì)因數(shù)組合且滿足(*)式者,只有33,39,55,65,143,三個質(zhì)因數(shù)組合且滿足(*)式者,有165和195,一個質(zhì)因數(shù)以及多于三個質(zhì)因數(shù)的積,都不能滿足(*)式.因此最多產(chǎn)生7個兩兩不同的四位數(shù).然后再求和即可.
解答:解:①設這組四位數(shù)共n個,分別為
a1=42x1,a2=42x2,a3=42x3,an=42xn,其中的每個ai=42xi是四位數(shù),
所以1000≤42xi<10000,23<
1000
42
xi
10000
42
<239

②由題設知90090=[a1,a2,an]=[42x1,42x2,42xn]=42[x1,x2,xn]
所以[x1,x2,xn]=
90090
42
=2145=3×5×11×13,其中23<xi<239.(*)
可知xi是由3,5,11,13每個至多用一次組合成的在23和239之間的自然數(shù),并且兩兩不同.其中兩個質(zhì)因數(shù)組合且滿足(*)式者,只有33,39,55,65,143,三個質(zhì)因數(shù)組合且滿足(*)式者,有165和195,一個質(zhì)因數(shù)以及多于三個質(zhì)因數(shù)的積,都不能滿足(*)式.因此最多產(chǎn)生7個兩兩不同的四位數(shù).
a1=42×33=1386,a2=42×39=1638,
a3=42×55=2310,a4=42×65=2730,
a5=42×143=6006,a6=42×165=6930,
a7=42×195=8190.
它們的和等于
42×(33+39+55+65+143+165+195)
=42×695=29190.
答:這組兩兩不同的四位數(shù)最多是7個,它們的和是29190.
點評:本題考查了最大公約數(shù)和最小公倍數(shù)的相關(guān)知識,牢記概念并熟練運用是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一組兩兩不等的四位數(shù),它們的最大公約數(shù)是42,最小公倍數(shù)是90090.問這組四位數(shù)最多能有多少個?它們的和是多少?

查看答案和解析>>

同步練習冊答案