年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級上 (北師大版) 北師大版 題型:044
已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍.
(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相
反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0
∴k<
∴k<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)存在.如果方程的兩個(gè)實(shí)數(shù)根互為相反數(shù),則
x1+x2==0
解得k=.檢驗(yàn)知,k=是=0的解.
所以,當(dāng)k=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).
當(dāng)你讀了上面的解答過程后,請判斷是否有錯(cuò)誤?如果有,請指出錯(cuò)誤之處,并直接寫出正確的答案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com