①②③④
分析:由菱形ABCD中,AB=AC,易證得△ABC是等邊三角形,則可得∠B=∠EAC=60°,由SAS即可證得△ABF≌△CAE;則可得∠BAF=∠ACE,利用三角形外角的性質(zhì),即可求得∠AHC=120°;在HD上截取HK=AH,連接AK,易得點A,H,C,D四點共圓,則可證得△AHK是等邊三角形,然后由AAS即可證得△AKD≌△AHC,則可證得AH+CH=DH;易證得△OAD∽△AHD,由相似三角形的對應邊成比例,即可得AD
2=OD•DH.
解答:∵四邊形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等邊三角形,
同理:△ADC是等邊三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,
,
∴△ABF≌△CAE(SAS);
故①正確;
∴∠BAF=∠ACE,
∵∠AEH=∠B+∠BCE,
∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;
故②正確;
在HD上截取HK=AH,連接AK,
∵∠AHC+∠ADC=120°+60°=180°,
∴點A,H,C,D四點共圓,
∴∠AHD=∠ACD=60°,∠ACH=∠ADH,
∴△AHK是等邊三角形,
∴AK=AH,∠AKH=60°,
∴∠AKD=∠AHC=120°,
在△AKD和△AHC中,
,
∴△AKD≌△AHC(AAS),
∴CH=DK,
∴DH=HK+DK=AH+CH;
故③正確;
∵∠OAD=∠AHD=60°,∠ODA=∠ADH,
∴△OAD∽△AHD,
∴AD:DH=OD:AD,
∴AD
2=OD•DH.
故④正確.
故答案為:①②③④.
點評:此題考查了相似三角形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.