【題目】如圖,∠MON=30°,點B1在邊OM上,且OB1=3,過點B1作B1A1⊥OM交ON于點A1,以A1B1為邊在A1B1右側(cè)作等邊三角形A1B1C1;過點C1作OM的垂線分別交OM、ON于點B2、A2,以A2B2為邊在A2B2的右側(cè)作等邊三角形A2B2C2;過點C2作OM的垂線分別交OM、ON于點B3、A3,以A3B3為邊在A3B3的右側(cè)作等邊三角形A3B3C3,…;按此規(guī)律進行下去,則△An﹣1AnCn﹣1的高為______.(用含正整數(shù)n的代數(shù)式表示)
【答案】()n﹣1
【解析】
證明△A1A2C1是等邊三角形,△A2A3C2、…、△An﹣1AnCn﹣1都是等邊三角形,求出A1C1=A1B1=B1C1=,由等邊三角形的性質(zhì)得出等邊△A1A2C1的高為:A1C1=,同理求出等邊△A2A3C2的高為:A2C2=()2,…,得出規(guī)律即可;
解:∵∠MON=30°,B1A1⊥OM,△A1B1C1是等邊三角形,
∴A1B1=OB1=,
∠OA1B1=60°,∠B1A1C1=60°,
∴∠C1A1A2=60°,
∵A2B2⊥OM,
∴A2B2∥A1B1,
∴∠A1A2C1=∠OA1B1=60°,
∴△A1A2C1是等邊三角形,
同理:△A2A3C2、…、△An﹣1AnCn﹣1都是等邊三角形,
∴A1C1=A1B1=B1C1=,
∴等邊△A1A2C1的高為:A1C1=,
∵∠C1B1B2=90°﹣60°=30°,
∴B2C1=B1C1=,
∴A2C2=A2B2=A1C1+B2C1=,
∴等邊△A2A3C2的高為:A2C2=×=()2,…,
∴△An﹣1AnCn﹣1的高為()n﹣1;
故答案為:()n﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校數(shù)學興趣小組為測量校園主教學樓AB的高度,由于教學樓底部不能直接到達,故興趣小組在平地上選擇一點C,用測角器測得主教學樓頂端A的仰角為30°,再向主教學樓的方向前進24米,到達點E處(C,E,B三點在同一直線上),又測得主教學樓頂端A的仰角為60°,已知測角器CD的高度為1.6米,請計算主教學樓AB的高度.(≈1.73,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知等邊,頂點在雙曲線上,點的坐標為.過作交雙曲線于點,過作交x軸于點得到第二個等邊;過作交雙曲線于點,過作交x軸于點,得到第三個等邊;以此類推,…,則點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學想利用一些測量工具和所學的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進行兩次測量,于是在陽光下,他們首先利用影長進行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于兩點.
(1)求反比例函數(shù)的表達式;
(2)在軸上找一點,使的值最小,求滿足條件的點的坐標;
(3)在(2)的條件下,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),將正方形ABCD與正方形GECF的頂點C重合,當正方形GECF的頂點G在正方形ABCD的對角線AC上時,的值為______.
如圖(2),將正方形CEGF繞點C順時針方向旋轉(zhuǎn)a角(0°<a<45°),猜測AG與BE之間的數(shù)量關(guān)系,并說明理由.
如圖(3),將正方形CEGF繞點C順時針方向旋轉(zhuǎn)a角(45°<a<90°)使得B、E、G三點在一條直線上,此時tan∠GAC=,AG=6,求△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.
(1)求證:;
(2)設(shè)EF=x,當x為何值時,矩形EFPQ的面積最大?并求出最大面積;
(3)當矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當矩形的邊PQ到達A點時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內(nèi)可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com