解:(1)連接DB,則∠DBO=90°
∵AB切⊙O于點C
∴AB⊥OD
又∵OD是⊙O′直徑
∴OA=OB
∴OA
2=OC•OD=r•2R=2Rr
即OA•OB=2rR;
(2)①無變化
連接00′,并延長交⊙O′于D點,連接DB、OC.則∠DBO=∠ACO=90°
∵∠A=∠D
∴△OCA∽△OBD
∴OA•OB=OC•OD=r•2R=2Rr.
②無變化.
連接00′,并延長交⊙O′于D點,連接DB、OC,則∠DBO=∠ACO=90°
∵∠A=∠D
∴△OCA∽△OBD
∴OA•OB=OC•OD=2rR.
分析:(1)連接DB,則∠DBO=90°,由于AB切⊙O于點C,因此AB⊥OD,已知OD是⊙O′直徑,根據(jù)垂徑定理可得OA=OB,在直角三角形OBD中根據(jù)射影定理可得OB
2=OC•OD=r•2R=2Rr.即OA•OB=2rR.(也可證明△OBD∽△OCA)
(2)①無變化,連接00′,并延長交⊙O′于D點,連接DB、OC.可通過證明△OCA∽△OBD來得出(1)的結(jié)論;
②無變化,連接OO′,并延長交⊙O′于B點,連接DB、OC同①相同通過證△OCA∽△OBD,得OA•OB=OC•OD=r•2R=2Rr.
點評:考查圓與圓的位置關(guān)系,相似三角形的判定和性質(zhì)的應(yīng)用.