已知如圖,等腰直角三角形ABC中,∠A=90°,D為BC中點(diǎn),E、F分別為AB、AC上的點(diǎn),且滿(mǎn)足EA=CF.求證:DE=DF.
精英家教網(wǎng)
證明:連AD,如圖,
精英家教網(wǎng)

∵△ABC為等腰直角三角形,D為BC中點(diǎn),
∴AD=DC,AD平分∠BAC,∠C=45°,
∴∠EAD=∠C=45°,
在△ADE和△CDF中
EA=CF
∠EAD=∠C
AD=CD

∴△ADE≌△CDF,
∴DE=DF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知如圖1,點(diǎn)P是正方形ABCD的BC邊上一動(dòng)點(diǎn),AP交對(duì)角線(xiàn)BD于點(diǎn)E,過(guò)點(diǎn)B作BQ⊥AP于G點(diǎn),交對(duì)角線(xiàn)AC于F,交邊CD于Q點(diǎn).
(1)小聰在研究圖形時(shí)發(fā)現(xiàn)圖中除等腰直角三角形外,還有幾對(duì)三角形全等.請(qǐng)你寫(xiě)出其中三對(duì)全等三角形,并選擇其中一對(duì)全等三角形證明;
(2)小明在研究過(guò)程中連接PE,提出猜想:在點(diǎn)P運(yùn)動(dòng)過(guò)程中,是否存在∠APB=∠CPF?若存在,點(diǎn)P應(yīng)滿(mǎn)足何條件并說(shuō)明理由;若不存在,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,直線(xiàn)y=-2x+2與x軸、y軸分別交于點(diǎn)A、B,以線(xiàn)段AB為直角邊在第一象限內(nèi)作等精英家教網(wǎng)腰直角△ABC,∠BAC=90°,過(guò)C作CD⊥x軸,垂足為D.
(1)求點(diǎn)A、B的坐標(biāo)和AD的長(zhǎng);
(2)求過(guò)B、A、D三點(diǎn)的拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按圖1放置,使點(diǎn)E在BC上,取DF的中點(diǎn)G,連接EG,CG.
(1)延長(zhǎng)EG交DC于H,試說(shuō)明:DH=BE.
(2)將圖1中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,連接DF,取DF中點(diǎn)G(如圖2),莎莎同學(xué)發(fā)現(xiàn):EG=CG且EG⊥CG.在設(shè)法證明時(shí)他發(fā)現(xiàn):若連接BD,則D,E,B三點(diǎn)共線(xiàn).你能寫(xiě)出結(jié)論“EG=CG且EG⊥CG”的完整理由嗎?請(qǐng)寫(xiě)出來(lái).
(3)將圖1中△BEF繞B點(diǎn)轉(zhuǎn)動(dòng)任意角度α(0<α<90°),再連接DF,取DF的中點(diǎn)G(如圖3),第2問(wèn)中的結(jié)論是否成立?若成立,試說(shuō)明你的結(jié)論;若不成立,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•湖州)已知如圖,直線(xiàn)y=-2x+2與x軸、y軸分別交于點(diǎn)A、B,以線(xiàn)段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°,過(guò)C作CD⊥x軸,垂足為D.
(1)求點(diǎn)A、B的坐標(biāo)和AD的長(zhǎng);
(2)求過(guò)B、A、D三點(diǎn)的拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•湖州)已知如圖,直線(xiàn)y=-2x+2與x軸、y軸分別交于點(diǎn)A、B,以線(xiàn)段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°,過(guò)C作CD⊥x軸,垂足為D.
(1)求點(diǎn)A、B的坐標(biāo)和AD的長(zhǎng);
(2)求過(guò)B、A、D三點(diǎn)的拋物線(xiàn)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案