已知二次函數(shù)y=x2+bx+c的頂點M在直線y=-4x上,并且圖象經(jīng)過點A(-1,0).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)與x軸的另一個交點為B,與y軸的交點為C,求經(jīng)過M、B、C三點的圓O′的直徑長;
(3)設(shè)圓O′與y軸的另一個交點為N,經(jīng)過P(-2,0)、N兩點的直線為l,則圓心O′是否在直線上,請說明理由.

【答案】分析:(1)由公式法可表示出二次函數(shù)的頂點坐標代入y=-4x,得到關(guān)于b,c的關(guān)系式,再把A的坐標代入函數(shù)解析式又可得到b,c的關(guān)系式,聯(lián)立以上兩個關(guān)系式解方程組求出b和c的值即可求出這個二次函數(shù)的解析式;
(2)分別求出B,C,和M的坐標,利用勾股定理求出BC,MC,BM的長,利用勾股定理的逆定理即可證明三角形為直角三角形,并且BM為圓的直徑問題得解;
(3)圓心O′在直線上,過O′作x軸的垂線,交x軸于R,過O′作y軸的垂線,交y軸于T,交MQ于S,利用圓周角定理和勾股定理求出O′,N的坐標,再設(shè)經(jīng)過P(-2,0)、N兩點的直線為l的解析式為y=kx+b,把O的坐標代入已求出的一次函數(shù)的解析式檢驗即可.
解答:解(1)∵二次函數(shù)y=x2+bx+c的頂點M的坐標為(-,)在直線y=-4x上,
=-①,
∵圖象經(jīng)過點A(-1,0).
∴0=1-b+c②,
聯(lián)立①②得
,
解得:,
故y=x2-2x-3;

(2)∵y=x2-2x-3=(x-1)2-4;
∴與y軸的交點C的坐標是(0,-3),頂點M的坐標是(1,-4)
設(shè)y=0,則x2-2x-3=0,解得x=-1或3,
∴二次函數(shù)與x軸的另一個交點B的坐標是(3,0),
過M作ME⊥OE,過B作BF⊥EM交EM于F,
∴OC=3,OB=3,CE=OE-OC=1,MF=2,BF=4,EM=1
在Rt△BOC,Rt△CEM,Rt△BFM中,利用勾股定理得:BC=3,MC=,BM=2,
∵BC2+MC2=20,BM2=2,
∴BC2+MC2=BM2,
∴△MBC為直角三角形,且∠BCM=90°,
∴⊙O′的直徑長為BM=2;

(3)圓心O′是在直線上,理由如下:
過O′作x軸的垂線,交x軸于R,過O′作y軸的垂線,交y軸于T,交MQ于S,
設(shè)⊙O′與x軸的另一個交點為Q,連接MQ,由BM是⊙O′的直徑,知∠BQM=90°.
∴Q(1,0),
∵BQ=2,O′R⊥OB,
∴QR=1,
∴OR=2,
在Rt△O′RB中,O′R==2,
∴O′的坐標為(2,-2),
∴OT=2,
∵OC=3,
∴TC=1,
∴NC=1,
∴ON=1,
∴N的坐標為(0,-1)
設(shè)過PN的直線解析式為y=kx+b,把N的坐標為(0,-1)和P(-2,0)分別代入求得k=-,b=-1,
∴過PN的直線解析式為y=-x-1,
∵O′的坐標為(2,-2),
∴-2=-×2-1=-2,
∴圓心O′是在直線上.
點評:本題考查了求二次函數(shù)和一次函數(shù)的解析式、勾股定理的運用、勾股定理的逆定理的運用以及圓周角定理和矩形的性質(zhì)運用,題目的綜合性很強,難度很大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知二次函數(shù)y=x2+mx+m-5,
(1)求證:不論m取何值時,拋物線總與x軸有兩個交點;
(2)求當m取何值時,拋物線與x軸兩交點之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知二次函數(shù)y1=x2-x-2和一次函數(shù)y2=x+1的兩個交點分別為A(-1,0),B(3,4),當y1>y2時,自變量x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)試求二次函數(shù)的解析式;
(2)求y的最大值;
(3)寫出當y>0時,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案