若2x2-6y2+xy+kx+6能分解為兩個一次因式的積,則整數(shù)k的值是______.
設(shè)2x2-6y2+xy+kx+6能分解成:(x+ay+c)(2x+by+d),
即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,
∴cd=6,
∵6=1×6=2×3=(-2)(-3)=(-1)(-6),
∴①c=1,d=6時,ad+bc=6a+b=0,
與2a+b=1聯(lián)立求解得,
a=-
1
4
b=
3
2
,
或c=6,d=1時,ad+bc=a+6b=0
與2a+b=1聯(lián)立求解得,
a=
6
11
b=-
1
11

②c=2,d=3時,ad+bc=3a+2b=0,
與2a+b=1聯(lián)立求解得,
a=2
b=-3
,
或c=3,d=2時,ad+bc=2a+3b=0,
與2a+b=1聯(lián)立求解得,
a=
3
4
b=-
1
2

③c=-2,d=-3時,ad+bc=-3a-2b=0,
與2a+b=1聯(lián)立求解得,
a=2
b=-3
,
或c=-3,d=-2,ad+bc=-2a-3b=0,
與2a+b=1聯(lián)立求解得,
a=
3
4
b=-
1
2
,
④c=-1,d=-6時,ad+bc=-6a-b=0,
與2a+b=1聯(lián)立求解得,
a=-
1
4
b=
3
2
,
或c=-6,d=-1時,ad+bc=-a-6b=0,
與2a+b=1聯(lián)立求解得,
a=
6
11
b=-
1
11
,
∴c=2,d=3時,c=-2,d=-3時,符合,
∴k=2c+d=2×2+3=7,
k=2c+d=2×(-2)+(-3)=-7,
∴整數(shù)k的值是7,-7.
故答案為:7,-7.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、若2x2-6y2+xy+kx+6能分解為兩個一次因式的積,則整數(shù)k的值是
8、13、7、-7、-8、-13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

若2x2-6y2+xy+kx+6能分解為兩個一次因式的積,則整數(shù)k的值是________.

查看答案和解析>>

同步練習(xí)冊答案