.在平面直角坐標(biāo)系中,正方形ABCD的頂點A、B、C的坐標(biāo)分別為(﹣1,1)、(﹣1,﹣1)、(1,﹣1),則頂點D的坐標(biāo)為 


(1,1) 

      解:∵正方形兩個頂點的坐標(biāo)為A(﹣1,1),B(﹣1,﹣1),

∴AB=1﹣(﹣1)=2,

∵點C的坐標(biāo)為:(1,﹣1),

∴第四個頂點D的坐標(biāo)為:(1,1).

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知兩點A(5,6)、B(7,2),先將線段AB向左平移一個單位,再以原點O為位似中心,在第一象限內(nèi)將其縮小為原來的得到線段CD,則點A的對應(yīng)點C的坐標(biāo)為(  )

    A.(2,3)           B. (3,1)               C.                             (2,1) D. (3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知經(jīng)過點D(2,﹣)的拋物線y=(x+1)(x﹣3)(m為常數(shù),且m>0)與x軸交于點A、B(點A位于B的左側(cè)),與y軸交于點C.

(1)填空:m的值為   ,點A的坐標(biāo)為   ;

(2)根據(jù)下列描述,用尺規(guī)完成作圖(保留作圖痕跡,不寫作法):連接AD,在x軸上方作射線AE,使∠BAE=∠BAD,過點D作x軸的垂線交射線AE于點E;

(3)動點M、N分別在射線AB、AE上,求ME+MN的最小值;

(4)t是過點A平行于y軸的直線,P是拋物線上一點,過點P作l的垂線,垂足為點G,請你探究:是否存在點P,使以P、G、A為頂點的三角形與△ABD相似?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點D、E、F分別為△ABC各邊中點,下列說法正確的是( 。

    A.DE=DF            B. EF=AB                C.                             S△ABD=S△ACD D. AD平分∠BAC

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點A(m,2),B(5,n)在函數(shù)y=(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應(yīng)點分別為A′、B′.圖中陰影部分的面積為8,則k的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.

(1)根據(jù)題意,填寫如表:

蔬菜的批發(fā)量(千克)

25

60

75

90

所付的金額(元)

125

 300 

300

 360 ]

(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;

(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價不變,那么零售價定為多少時,該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,菱形ABCD的邊長為2,∠DAB=60°,E為BC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個幾何體的三視圖如圖所示,這個幾何體是( 。

A.棱柱      B.圓柱      C.圓錐     D.球

查看答案和解析>>

同步練習(xí)冊答案