函數(shù)的圖象不經(jīng)過 (   )
A.第一象限B.第二象限C.第三象限D.第四象限
A
分析:因?yàn)閗=-2<0,一次函數(shù)圖象過二四象限,b=-3<0,圖象過第三象限.
解:∵y=-2x-3
∴k<0,b<0
∴y=-2x-3的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的邊ABx軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB=2,AD=1,點(diǎn)Q的坐標(biāo)為(0,2).

小題1:(1)求直線QC的解析式;
小題2:(2)點(diǎn)P(a,0)在邊AB上運(yùn)動,若過點(diǎn)P、Q的直線將矩形ABCD的周長分成3∶1兩部分,求出此時a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

(本小題滿分10分)
某商場試銷一種成本為每件60元的服裝,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,
(1)求一次函數(shù)的表達(dá)式;
(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;
(3)若該商場想獲得500元的利潤且盡可能地擴(kuò)大銷售量,則銷售單價應(yīng)定為多少元?
(4)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

 一次函數(shù)y=2x+1的圖象不經(jīng)過第象限
A.一B.二C.三D.四

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,函數(shù)y=mx-4m的圖象分別交x軸、y軸于點(diǎn)N、M,線段MN上兩點(diǎn)A、B在軸上的垂足分別為A1、B1,若OA1+OB1>4,則△OA1A的面積S1與△OB1B的面積S2的大小關(guān)系是( ).

A.S1>S2                      B.S1="S2"
C.S1<S2                      D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

. (本題滿分12分)
如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn),直線經(jīng)過點(diǎn),

小題1:(1)若在軸上方直線上存在點(diǎn)使△為等邊三角形,求直線所表達(dá)的函數(shù)關(guān)系式;
小題2:(2)若在軸上方直線上有且只有三個點(diǎn)能和、構(gòu)成直角三角形,求直線所表達(dá)的函數(shù)關(guān)系式;
小題3:(3)若在軸上方直線上有且只有一個點(diǎn)在函數(shù)的圖形上,求直線所表達(dá)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一次函數(shù)y=kx+b中,kb>0,且y隨x增大而增大,則y=kx+b的圖象大致為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.某蒜薹生產(chǎn)基地喜獲豐收收蒜薹200噸。經(jīng)市場調(diào)查,可采用批發(fā)、零售、冷庫儲藏后銷售,并按這三種方式銷售,計劃每噸的售價及成本如下表:
銷售方式
批發(fā)
零售
冷庫儲藏后銷售
售價(元/噸)
3000
4500
5500
成本(元/噸)
700
1000
1200
小題1:(1)若經(jīng)過一段時間,蒜薹按計劃全部售出后獲得利潤為y(元)蒜薹x(噸),且零售是批發(fā)量的求y與x之間的函數(shù)關(guān)系;
小題2:(2)由于受條件限制經(jīng)冷庫儲藏的蒜薹最多80噸,求該生產(chǎn)基地計劃全部售完蒜薹獲得最大利潤。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,),直線l2的函數(shù)表達(dá)式為,l1與l2相交于點(diǎn)P.⊙C是一個動圓,圓心C在直線l1上運(yùn)動,設(shè)圓心C的橫坐標(biāo)是a.過點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.
小題1:求直線l1的函數(shù)表達(dá)式;
小題2: 當(dāng)⊙C和直線l2相切時,請證明點(diǎn)P到直線CM的距離等于⊙C的半徑R,并寫出R=時a的值.
小題3:當(dāng)⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點(diǎn)N是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案