(2013•吉林)如圖,AB是⊙O的弦,OC⊥AB于點C,連接OA、OB.點P是半徑OB上任意一點,連接AP.若OA=5cm,OC=3cm,則AP的長度可能是
6
6
cm(寫出一個符合條件的數(shù)值即可)
分析:根據(jù)勾股定理求出AC,根據(jù)垂徑定理求出AB,即可得出AP的范圍是大于等于5cm且小于等于8cm,舉出即可.
解答:解:∵OC⊥AB,
∴∠ACO=90°,
∵OA=5cm,OC=3cm,
∴由勾股定理得:AC=
AO2-OC2
=4cm,
∴由垂徑定理得:AB=2AC=8cm,
只要舉出的數(shù)大于等于5且小于等于8cm即可,如6cm,
故答案為:6.
點評:本題考查了勾股定理和垂徑定理的應(yīng)用,關(guān)鍵是求出AP的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖,把Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,點C′恰好落在邊AB上,連接BB′,則∠BB′C′=
20
20
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖所示,體育課上,小麗的鉛球成績?yōu)?.4m,她投出的鉛球落在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖,在平面直角坐標(biāo)系中,拋物線所表示的函數(shù)解析式為y=-2(x-h)2+k,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點D、E、F分別是邊AB、BC、AC的中點,連接DE、DF,動點P,Q分別從點A、B同時出發(fā),運動速度均為1cm/s,點P沿A    F    D的方向運動到點D停止;點Q沿BC的方向運動,當(dāng)點P停止運動時,點Q也停止運動.在運動過程中,過點Q作BC的垂線交AB于點M,以點P,M,Q為頂點作平行四邊形PMQN.設(shè)平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線段是面積為0有幾何圖形),點P運動的時間為x(s)
(1)當(dāng)點P運動到點F時,CQ=
5
5
cm;
(2)在點P從點F運動到點D的過程中,某一時刻,點P落在MQ上,求此時BQ的長度;
(3)當(dāng)點P在線段FD上運動時,求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標(biāo)系中,點P(0,m2)(m>0)在y軸正半軸上,過點P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點A、B,交拋物線C2:y=
1
9
x2于點C、D.原點O關(guān)于直線AB的對稱點為點Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對任意m(m>0)均有
AB
CD
=
2
3
2
3
.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為
2
3
2
3

(2)當(dāng)△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點A作y軸的平行線交拋物線C2于點E,過點D作y軸的平行線交拋物線C1于點F.在y軸上任取一點M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

同步練習(xí)冊答案